649 research outputs found

    Spontaneous parity violation and minimal Higgs models

    Get PDF
    In this paper we present a model for the spontaneous breaking of parity with two Higgs doublets and two neutral Higgs singlets which are even and odd under D-parity. The condition vR>>vL v_R >>v_L can be satisfied without introducing bidoublets and it is induced by the breaking of D-parity through the vacuum expectation value of the odd Higgs singlet. Examples of left-right symmetric and mirror fermions models in grand unified theories are presented.Comment: Revised version. Accepted in Eur. Phys. Journal

    Inflationary Cosmology with Five Dimensional SO(10)

    Full text link
    We discuss inflationary cosmology in a five dimensional SO(10) model compactified on S1/(Z2×Z2)S^1/(Z_2\times Z_2'), which yields SU(3)c×SU(2)L×U(1)Y×U(1)XSU(3)_c\times SU(2)_L\times U(1)_Y\times U(1)_X below the compactification scale. The gauge symmetry SU(5)×U(1)XSU(5)\times U(1)_X is preserved on one of the fixed points, while ``flipped'' SU(5)×U(1)XSU(5)'\times U(1)'_X is on the other fixed point. Inflation is associated with U(1)XU(1)_X breaking, and is implemented through FF-term scalar potentials on the two fixed points. A brane-localized Einstein-Hilbert term allows both branes to have positive tensions during inflation. The scale of U(1)XU(1)_X breaking is fixed from δT/T\delta T/T measurements to be around 101610^{16} GeV, and the scalar spectral index n=0.980.99n=0.98-0.99. The inflaton field decays into right-handed neutrinos whose subsequent out of equilibrium decay yield the observed baryon asymmetry via leptogenesis.Comment: 1+19 pages, improved discussion of 5D cosmology, Version to appear in PR

    On the Generation of a Scale-Invariant Spectrum of Adiabatic Fluctuations in Cosmological Models with a Contracting Phase

    Get PDF
    In Pre-Big-Bang and in Ekpyrotic Cosmology, perturbations on cosmological scales today are generated from quantum vacuum fluctuations during a phase when the Universe is contracting (viewed in the Einstein frame). The backgrounds studied to date do not yield a scale invariant spectrum of adiabatic fluctuations. Here, we present a new contracting background model (neither of Pre-Big-Bang nor of the Ekpyrotic form) involving a single scalar field coupled to gravity in which a scale-invariant spectrum of curvature fluctuations and gravitational waves results. The equation of state of this scalar field corresponds to cold matter. We demonstrate that if this contracting phase can be matched via a nonsingular bounce to an expanding Friedmann cosmology, the scale-invariance of the curvature fluctuations is maintained. We also find new background solutions for Pre-Big-Bang and for Ekpyrotic cosmology, which involve two scalar fields with exponential potentials with background values which are evolving in time. We comment on the difficulty of obtaining a scale-invariant spectrum of adiabatic fluctuations with background solutions which have been studied in the past.Comment: 8 pages, revised version without the section on perturbations, matching the version published on Phys. Rev. D. For cosmological perturbations in the two field model see astro-ph/021127

    Mesoscale magnetism at the grain boundaries in colossal magnetoresistive films

    Full text link
    We report the discovery of mesoscale regions with distinctive magnetic properties in epitaxial La1x_{1-x}Srx_{x}MnO3_{3} films which exhibit tunneling-like magnetoresistance across grain boundaries. By using temperature-dependent magnetic force microscopy we observe that the mesoscale regions are formed near the grain boundaries and have a different Curie temperature (up to 20 K {\it higher}) than the grain interiors. Our images provide direct evidence for previous speculations that the grain boundaries in thin films are not magnetically and electronically sharp interfaces. The size of the mesoscale regions varies with temperature and nature of the underlying defect.Comment: 4 pages of text, 4 figure

    Passing through the bounce in the ekpyrotic models

    Get PDF
    By considering a simplified but exact model for realizing the ekpyrotic scenario, we clarify various assumptions that have been used in the literature. In particular, we discuss the new ekpyrotic prescription for passing the perturbations through the singularity which we show to provide a spectrum depending on a non physical normalization function. We also show that this prescription does not reproduce the exact result for a sharp transition. Then, more generally, we demonstrate that, in the only case where a bounce can be obtained in Einstein General Relativity without facing singularities and/or violation of the standard energy conditions, the bounce cannot be made arbitrarily short. This contrasts with the standard (inflationary) situation where the transition between two eras with different values of the equation of state can be considered as instantaneous. We then argue that the usually conserved quantities are not constant on a typical bounce time scale. Finally, we also examine the case of a test scalar field (or gravitational waves) where similar results are obtained. We conclude that the full dynamical equations of the underlying theory should be solved in a non singular case before any conclusion can be drawn.Comment: 17 pages, ReVTeX 4, 13 figures, minor corrections, conclusions unchange

    Parametric amplification of metric fluctuations through a bouncing phase

    Full text link
    We clarify the properties of the behavior of classical cosmological perturbations when the Universe experiences a bounce. This is done in the simplest possible case for which gravity is described by general relativity and the matter content has a single component, namely a scalar field in a closed geometry. We show in particular that the spectrum of scalar perturbations can be affected by the bounce in a way that may depend on the wave number, even in the large scale limit. This may have important implications for string motivated models of the early Universe.Comment: 17 pages, 12 figures, LaTeX-ReVTeX format, version to match Phys. Rev.

    The Primordial Perturbation Spectrum from Various Expanding and Contracting Phases

    Full text link
    In this paper, focusing on the case of single scalar field, we discuss various expanding and contracting phases generating primordial perturbations, and study the relation between the primordial perturbation spectrum from these phases and the parameter w of state equation in details. Furthermore, we offer an interesting classification for the primordial perturbation spectrum from various phases, which may have important implications for building an early universe scenario embedded in possible high energy theories.Comment: 5 pages, 3 eps figure

    A model for spin-polarized transport in perovskite manganite bi-crystal grain boundaries

    Full text link
    We have studied the temperature dependence of low-field magnetoresistance and current-voltage characteristics of a low-angle bi-crystal grain boundary junction in perovskite manganite La_{2/3}Sr_{1/3}MnO_3 thin film. By gradually trimming the junction we have been able to reveal the non-linear behavior of the latter. With the use of the relation M_{GB} \propto M_{bulk}\sqrt{MR^*} we have extracted the grain boundary magnetization. Further, we demonstrate that the built-in potential barrier of the grain boundary can be modelled by V_{bi}\propto M_{bulk}^2 - M_{GB}^2. Thus our model connects the magnetoresistance with the potential barrier at the grain boundary region. The results indicate that the band-bending at the grain boundary interface has a magnetic origin.Comment: 9 pages, 5 figure

    Deuteron Electroweak Disintegration

    Get PDF
    We study the deuteron electrodisintegration with inclusion of the neutral currents focusing on the helicity asymmetry of the exclusive cross section in coplanar geometry. We stress that a measurement of this asymmetry in the quasi elastic region is of interest for an experimental determination of the weak form factors of the nucleon, allowing one to obtain the parity violating electron neutron asymmetry. Numerically, we consider the reaction at low momentum transfer and discuss the sensitivity of the helicity asymmetry to the strangeness radius and magnetic moment. The problems coming from the finite angular acceptance of the spectrometers are also considered.Comment: 30 pages, Latex, 7 eps figures, submitted to Phys.Rev.C e-mail: [email protected] , [email protected]
    corecore