2,825 research outputs found

    SU(3) symmetry breaking in decay constants and electromagnetic properties of pseudoscalar heavy mesons

    Full text link
    In this paper, the decay constants and mean square radii of pseudoscalar heavy mesons are studied in the SU(3) symmetry breaking. Within the light-front framework, the ratios fDs/fDf_{D_s}/f_D and fBs/fBf_{B_s}/f_B are individually estimated using the hyperfine splittings in the D(s)∗−D(s)D_{(s)}^*-D_{(s)} and B(s)∗−B(s)B_{(s)}^*-B_{(s)} states and the light quark masses, ms,qm_{s,q} (q=u,dq=u,d), to extract the wave function parameter β\beta. The values fDs/fD=1.29±0.07f_{D_s}/f_D= 1.29\pm0.07 and fBs/fB=1.32±0.08f_{B_s}/f_B= 1.32\pm 0.08 are obtained, which are not only chiefly determined by the ratio of light quark masses ms/mqm_s/m_q, but also insensitive to the heavy quark masses mc,bm_{c,b} and the decay constants fD,Bf_{D,B}. The dependence of fBc/fBf_{B_c}/f_B on ΔMBcBc∗\Delta M_{B_cB^*_c} with the varied charm quark masses is also shown. In addition, the mean square radii are estimated as well. The values =0.740+0.050−0.041\sqrt{} =0.740^{-0.041}_{+0.050} and =0.711+0.058−0.049\sqrt{} =0.711^{-0.049}_{+0.058} are obtained, and the sensitivities of on the heavy and light quark masses are similar to those of the decay constants.Comment: 21 pages, 5 figures, 4 tables, some typos are corrected, version to be published in Phys. Rev.

    Photon-meson transition form factors of light pseudoscalar mesons

    Full text link
    The photon-meson transition form factors of light pseudoscalar mesons π0\pi ^{0}, η\eta, and η′\eta ^{\prime} are systematically calculated in a light-cone framework, which is applicable as a light-cone quark model at low Q2Q^{2} and is also physically in accordance with the light-cone pQCD approach at large Q2Q^{2}. The calculated results agree with the available experimental data at high energy scale. We also predict the low Q2Q^{2} behaviors of the photon-meson transition form factors of π0\pi ^{0}, η\eta and η′\eta ^{\prime }, which are measurable in e+A(Nucleus)→e+A+Me+A({Nucleus})\to e+A+M process via Primakoff effect at JLab and DESY.Comment: 22 Latex pages, 7 figures, Version to appear in PR

    Conductivity Due to Classical Phase Fluctuations in a Model For High-T_c Superconductors

    Full text link
    We consider the real part of the conductivity, \sigma_1(\omega), arising from classical phase fluctuations in a model for high-T_c superconductors. We show that the frequency integral of that conductivity, \int_0^\infty \sigma_1 d\omega, is non-zero below the superconducting transition temperature TcT_c, provided there is some quenched disorder in the system. Furthermore, for a fixed amount of quenched disorder, this integral at low temperatures is proportional to the zero-temperature superfluid density, in agreement with experiment. We calculate \sigma_1(\omega) explicitly for a model of overdamped phase fluctuations.Comment: 4pages, 2figures, submitted to Phys.Rev.

    Electronic Origin of the Inhomogeneous Pairing Interaction in the High-Tc Superconductor Bi2Sr2CaCu2O8+d

    Full text link
    Identifying the mechanism of superconductivity in the high-temperature cuprate superconductors is one of the major outstanding problems in physics. We report local measurements of the onset of superconducting pairing in the high-transition temperature (Tc) superconductor Bi2Sr2CaCu2O8+d using a lattice-tracking spectroscopy technique with a scanning tunneling microscope. We can determine the temperature dependence of the pairing energy gaps, the electronic excitations in the absence of pairing, and the effect of the local coupling of electrons to bosonic excitations. Our measurements reveal that the strength of pairing is determined by the unusual electronic excitations of the normal state, suggesting that strong electron-electron interactions rather than low-energy (<0.1 volts) electron-boson interactions are responsible for superconductivity in the cuprates

    Non-linear I(V)I(V) Characteristics of Luttinger Liquids and Gated Hall Bars

    Full text link
    Non-linear current voltage characteristics of a disordered Luttinger liquid are calculated using a perturbative formalism. One finds non-universal power law characteristics of the form I(V)∼V1/(2g~−1)I(V)\sim V^{1/(2\tilde{g}-1)} which is valid both in the superfluid phase when II is small and also in the insulator phase when II is large. Mesoscopic voltage fluctuations are also calculated. One finds \Var(\Delta V) \sim I^{4\tilde{g}-3}. Both the I(V)I(V) characteristic and the voltage fluctuations exhibit universal power law behavior at the superfluid insulator transition where \tilde{g}=\tot. The possible application of these results to the non-linear transport properties of gated Hall bars is discussed.Comment: 8 pages. 4 uuencoded tiff figures available upon request to [email protected]

    Quasi-Fermi Distribution and Resonant Tunneling of Quasiparticles with Fractional Charges

    Full text link
    We study the resonant tunneling of quasiparticles through an impurity between the edges of a Fractional Quantum Hall sample. We show that the one-particle momentum distribution of fractionally charged edge quasiparticles has a quasi-Fermi character. The density of states near the quasi-Fermi energy at zero temperature is singular due to the statistical interaction of quasiparticles. Another effect of this interaction is a new selection rule for the resonant tunneling of fractionally charged quasiparticles: the resonance is suppressed unless an integer number of {\em electrons} occupies the impurity. It allows a new explanation of the scaling behavior observed in the mesoscopic fluctuations of the conductivity in the FQHE.Comment: 7 pages, REVTeX 3.0, Preprint SU-ITP-93-1

    Local Thermometry of Neutral Modes on the Quantum Hall Edge

    Full text link
    A system of electrons in two dimensions and strong magnetic fields can be tuned to create a gapped 2D system with one dimensional channels along the edge. Interactions among these edge modes can lead to independent transport of charge and heat, even in opposite directions. Measuring the chirality and transport properties of these charge and heat modes can reveal otherwise hidden structure in the edge. Here, we heat the outer edge of such a quantum Hall system using a quantum point contact. By placing quantum dots upstream and downstream along the edge of the heater, we can measure both the chemical potential and temperature of that edge to study charge and heat transport, respectively. We find that charge is transported exclusively downstream, but heat can be transported upstream when the edge has additional structure related to fractional quantum Hall physics.Comment: 24 pages, 18 figure

    On the security of arbitrated quantum signature schemes

    Full text link
    Due to potential capability of providing unconditional security, arbitrated quantum signature (AQS) schemes, whose implementation depends on the participation of a trusted third party, received intense attention in the past decade. Recently, some typical AQS schemes were cryptanalyzed and improved. In this paper, we analyze security property of some AQS schemes and show that all the previous AQS schemes, no matter original or improved, are still insecure in the sense that the messages and the corresponding signatures can be exchanged among different receivers, allowing the receivers to deny accepting the signature of an appointed message. Some further improvement methods on the AQS schemes are also discussed.Comment: 4 pages, no figure

    MRI detection of hepatic n-acetylcysteine uptake in mice

    Get PDF
    This proof-of-concept study looked at the feasibility of using a thiol–water proton exchange (i.e., CEST) MRI contrast to detect in vivo hepatic N-acetylcysteine (NAC) uptake. The feasibility of detecting NAC-induced glutathione (GSH) biosynthesis using CEST MRI was also investigated. The detectability of the GSH amide and NAC thiol CEST effect at B0 = 7 T was determined in phantom experiments and simulations. C57BL/6 mice were injected intravenously (IV) with 50 g L−1 NAC in PBS (pH 7) during MRI acquisition. The dynamic magnetisation transfer ratio (MTR) and partial Z-spectral data were generated from the acquisition of measurements of the upfield NAC thiol and downfield GSH amide CEST effects in the liver. The 1H-NMR spectroscopy on aqueous mouse liver extracts, post-NAC-injection, was performed to verify hepatic NAC uptake. The dynamic MTR and partial Z-spectral data revealed a significant attenuation of the mouse liver MR signal when a saturation pulse was applied at −2.7 ppm (i.e., NAC thiol proton resonance) after the IV injection of the NAC solution. The 1H-NMR data revealed the presence of hepatic NAC, which coincided strongly with the increased upfield MTR in the dynamic CEST data, providing strong evidence that hepatic NAC uptake was detected. However, this MTR enhancement was attributed to a combination of NAC thiol CEST and some other upfield MT-generating mechanism(s) to be identified in future studies. The detection of hepatic GSH via its amide CEST MRI contrast was inconclusive based on the current results
    • …
    corecore