312 research outputs found

    Eucalyptus-derived essential oils alleviate microbes and modulate inflammation by suppressing superoxide and elastase release

    Get PDF
    The Eucalyptus tree, belonging to the myrtle family, grows all over the world for its pharmaceutical and industrial benefits. In this article, we present a comparative analysis of the chemical composition of the hydrodistilled oils obtained from three different Eucalyptus species growing in Egypt viz. E. citriodora, E. camaldulensis, and E. ficifolia. Gas Chromatography-Mass Spectrometric guided analysis resulted in the identification of a total of 20 metabolites in E. citriodora oil with citronellal (54.9%) and citronellol (25.4%) being the most dominant components. β-cymene (12.7%) and 1,8-cineole (11.7%) were the major volatile constituents identified in E. camaldulensis oil, while trans-β-ocimene (22.4%), 1,8-cineole (13.5%), and L-trans-pinocarveol (12.5%) were the dominating components in the oil of E. ficifolia. The essential oils of the studied species were evaluated for their in vitro anti-inflammatory, antiviral including anti-SARS-CoV-2 (severe acute respiratory syndrome corona virus 2), antibacterial, and antifungal activities. E. citriodora oil displayed the highest inhibitory activity on the release of the superoxide radical (32%) and elastase enzyme (31%) in human neutrophils, while E. ficifolia oil had enhancing effects on elastase. The latter showed significant antiviral effects against hepatitis A, herpes simplex, and coxsackie viruses with IC50 values at 2.1, 2.5, and 5.6 μg/mL, respectively. Moderate antibacterial and antifungal activities were observed for Eucalyptus oils with Staphylococcus aureus being the most susceptible bacterial strain. E. ficifolia oil, similarly, displayed the best antibacterial activity with minimum inhibitory concentration (MIC) value at ca. 25 μg/mL (for S. aureus). On the contrary, E. camaldulensis oil was the most active against Candida albicans with an MIC value at 45 μg/mL. In silico studies were performed with a number of macromolecular drug targets for confirming the biological activities of the identified compounds and for interpreting their ADME (absorption-distribution-metabolism-elimination) parameters

    Mechanism of Salutary Effects of Astringinin on Rodent Hepatic Injury following Trauma-Hemorrhage: Akt-Dependent Hemeoxygenase-1 Signaling Pathways

    Get PDF
    Astringinin can attenuate organ injury following trauma-hemorrhage, the mechanism remains unknown. Protein kinase B/hemeoxygenase-1 (Akt/HO-1) pathway exerts potent anti-inflammatory effects in various tissues. The aim of this study is to elucidate whether Akt/HO-1 plays any role in astringinin-mediated attenuation of hepatic injury following trauma-hemorrhage. For study this, male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure 35–40 mmHg for 90 min) followed by fluid resuscitation. A single dose of astringinin (0.3 mg/kg body weight) with or without a PI3K inhibitor (wortmannin) or a HO antagonist (chromium-mesoporphyrin) was administered during resuscitation. Various parameters were measured at 24 h post-resuscitation. Results showed that trauma-hemorrhage increased plasma aspartate and alanine aminotransferases (AST and ALT) concentrations and hepatic myeloperoxidase activity, cytokine induced neutrophil chemoattractant (CINC)-1, CINC-3, intercellular adhesion molecule-1, and interleukin-6 levels. These parameters were significantly improved in the astringinin-treated rats subjected to trauma-hemorrhage. Astringinin treatment also increased hepatic Akt activation and HO-1 expression as compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of wortmannin or chromium-mesoporphyrin abolished the astringinin-induced beneficial effects on post-resuscitation pro-inflammatory responses and hepatic injury. These findings collectively suggest that the salutary effects of astringinin administration on attenuation of hepatic injury after trauma-hemorrhage are likely mediated via Akt dependent HO-1 up-regulation

    5-Methoxybenzothiophene-2-Carboxamides as Inhibitors of Clk1/4: Optimization of Selectivity and Cellular Potency

    Get PDF
    Clks have been shown by recent studies to be promising targets for cancer therapy, as they are considered key regulators in the process of pre-mRNA splicing, which in turn affects every aspect of tumor biology. In particular, Clk1 and -4 are overexpressed in several human tumors. Most of the potent Clk1 inhibitors reported in the literature are non-selective, mainly showing off-target activity towards Clk2, Dyrk1A and Dyrk1B. Herein, we present new 5-methoxybenzothiophene2-carboxamide derivatives with unprecedented selectivity. In particular, the introduction of a 3,5- difluoro benzyl extension to the methylated amide led to the discovery of compound 10b (cell-free IC50 = 12.7 nM), which was four times more selective for Clk1 over Clk2 than the previously published flagship compound 1b. Moreover, 10b showed an improved growth inhibitory activity with T24 cells (GI50 = 0.43 µM). Furthermore, a new binding model in the ATP pocket of Clk1 was developed based on the structure-activity relationships derived from new rigidified analogues

    Carijoside A, a Bioactive Sterol Glycoside from an Octocoral Carijoa sp. (Clavulariidae)

    Get PDF
    A new bioactive sterol glycoside, 3β-O-(3′,4′-di-O-acetyl-β-d-arabinopyranosyl) -25ξ-cholestane-3β,5α,6β,26-tetrol-26-acetate) (carijoside A, 1), was isolated from an octocoral identified as Carijoa sp. The structure of glycoside 1 was established by spectroscopic methods and by comparison with spectral data for the other known glycosides. Carijoside A (1) displayed significant inhibitory effects on superoxide anion generation and elastase release by human neutrophils and this compound exhibited moderate cytotoxicity toward DLD-1, P388D1, HL-60, and CCRF-CEM tumor cells

    Development of (4-Phenylamino)quinazoline Alkylthiourea Derivatives as Novel NF-κB Inhibitors

    Get PDF
    For many inflammatory diseases, new effective drugs with fewer side effects are needed. While it appears promising to target the activation of the central pro-inflammatory transcription factor NF-κB, many previously discovered agents suffered from cytotoxicity. In this study, new alkylthiourea quinazoline derivatives were developed that selectively inhibit the activation of NF-κB in macrophage-like THP−1 cells while showing low general cytotoxicity. One of the best com pounds, 19, strongly inhibited the production of IL-6 (IC50 = 0.84 µM) and, less potently, of TNFα (IC50 = 4.0 µM); in comparison, the reference compound, caffeic acid phenethyl ester (CAPE), showed IC50s of 1.1 and 11.4 µM, respectively. Interestingly, 19 was found to block the translocation of the NF-κB dimer to the nucleus, although its release from the IκB complex was unaffected. Furthermore, 19 suppressed the phosphorylation of NF-κB-p65 at Ser468 but not at Ser536; however, 19 did not inhibit any kinase involved in NF-κB activation. The only partial suppression of p65 phosphorylation might be associated with fewer side effects. Since several compounds selectively induced cell death in activated macrophage-like THP−1 cells, they might be particularly effective in various inflam matory diseases that are exacerbated by excess activated macrophages, such as arteriosclerosis and autoimmune diseases

    Frajunolides L–O, Four New 8-Hydroxybriarane Diterpenoids from the Gorgonian Junceella fragilis

    Get PDF
    Four new 8-hydroxybriarane diterpenoids, frajunolides L–O (1–4), were isolated from the Taiwanese gorgonian Junceella fragilis. The structures of compounds 1–4 were elucidated based on spectroscopic analysis, especially 2D NMR (1H-1H COSY, HSQC, HMBC and NOESY) and HRMS. Compounds 1 and 4 showed weak anti-inflammatory activity as tested by superoxide anion generation and elastase release by human neutrophil in response to fMLP/CB. Compound 3 showed selective inhibition on elastase release in vitro

    Discovery of New Eunicellins from an Indonesian Octocoral Cladiella sp.

    Get PDF
    Two new 11-hydroxyeunicellin diterpenoids, cladieunicellin F (1) and (–)-solenopodin C (2), were isolated from an Indonesian octocoral Cladiella sp. The structures of eunicellins 1 and 2 were established by spectroscopic methods, and eunicellin 2 was found to be an enantiomer of the known eunicellin solenopodin C (3). Eunicellin 2 displayed inhibitory effects on the generation of superoxide anion and the release of elastase by human neutrophils. The previously reported structures of two eunicellin-based compounds, cladielloides A and B, are corrected in this study

    Menelloides C and D, New Sesquiterpenoids from the Gorgonian Coral Menella sp

    Get PDF
    Two new metabolites, including a lindenane-type sesquiterpenoid, menelloide C (1), and a germacrane-type sesquiterpenoid, menelloide D (2), were isolated from a Formosan gorgonian coral identified as Menella sp. The structures of 1 and 2 were established by spectroscopic methods and 2 displayed a weak inhibitory effect on the release of elastase by human neutrophils
    corecore