78 research outputs found

    Generation of a single-cycle pulse using a two-stage compressor and its temporal characterization using a tunnelling ionization method

    Get PDF
    A single-cycle laser pulse was generated using a two-stage compressor and characterized using a pulse characterization technique based on tunnelling ionization. A 25-fs, 800-nm laser pulse was compressed to 5.5 fs using a gas-filled hollow-core fibre and a set of chirped mirrors. The laser pulse was further compressed, down to the single-cycle limit by propagation through multiple fused-silica plates and another set of chirped mirrors. The two-stage compressor mitigates the development of higher-order dispersion during spectral broadening. Thus, a single-cycle pulse was generated by compensating the second-order dispersion using chirped mirrors. The duration of the single-cycle pulse was 2.5 fs, while its transform-limited duration was 2.2 fs. A continuum extreme ultraviolet spectrum was obtained through high-harmonic generation without applying any temporal gating technique. The continuum spectrum was shown to have a strong dependence on the carrier-envelope phase of the laser pulse, confirming the generation of a single-cycle pulse. © 2019, The Author(s

    RNA-Peptide nanoplexes drug DNA damage pathways in high-grade serous ovarian tumors

    Get PDF
    DNA damaging chemotherapy is a cornerstone of current front‐line treatments for advanced ovarian cancer (OC). Despite the fact that a majority of these patients initially respond to therapy, most will relapse with chemo‐resistant disease; therefore, adjuvant treatments that synergize with DNA‐damaging chemotherapy could improve treatment outcomes and survival in patients with this deadly disease. Here, we report the development of a nanoscale peptide‐nucleic acid complex that facilitates tumor‐specific RNA interference therapy to chemosensitize advanced ovarian tumors to frontline platinum/taxane therapy. We found that the nanoplex‐mediated silencing of the protein kinase, MK2, profoundly sensitized mouse models of high‐grade serous OC to cytotoxic chemotherapy by blocking p38/MK2‐dependent cell cycle checkpoint maintenance. Combined RNAi therapy improved overall survival by 37% compared with platinum/taxane chemotherapy alone and decreased metastatic spread to the lungs without observable toxic side effects. These findings suggest (a) that peptide nanoplexes can serve as safe and effective delivery vectors for siRNA and (b) that combined inhibition of MK2 could improve treatment outcomes in patients currently receiving frontline chemotherapy for advanced OC.National Institutes of Health (U.S.) (Grant R01-ES015339)National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant 1F32EB017614)National Science Foundation (U.S.) (Grant GFRP 1122374)National Cancer Institute (U.S.) (Grant P30-CA14051)National Science Foundation (U.S.) (Grant DMR-0819762

    Myofilament Ca2+ desensitization mediates positive lusitropic effect of neuronal nitric oxide synthase in left ventricular myocytes from murine hypertensive heart

    Get PDF
    AbstractNeuronal nitric oxide synthase (NOS1 or nNOS) exerts negative inotropic and positive lusitropic effects through Ca2+ handling processes in cardiac myocytes from healthy hearts. However, underlying mechanisms of NOS1 in diseased hearts remain unclear. The present study aims to investigate this question in angiotensin II (Ang II)-induced hypertensive rat hearts (HP). Our results showed that the systolic function of left ventricle (LV) was reduced and diastolic function was unaltered (echocardiographic assessment) in HP compared to those in shams. In isolated LV myocytes, contraction was unchanged but peak [Ca2+]i transient was increased in HP. Concomitantly, relaxation and time constant of [Ca2+]i decay (tau) were faster and the phosphorylated fraction of phospholamban (PLN-Ser16/PLN) was greater. NOS1 protein expression and activity were increased in LV myocyte homogenates from HP. Surprisingly, inhibition of NOS1 did not affect contraction but reduced peak [Ca2+]i transient; prevented faster relaxation without affecting the tau of [Ca2+]i transient or PLN-Ser16/PLN in HP, suggesting myofilament Ca2+ desensitization by NOS1. Indeed, relaxation phase of the sarcomere length–[Ca2+]i relationship of LV myocytes shifted to the right and increased [Ca2+]i for 50% of sarcomere shortening (EC50) in HP. Phosphorylations of cardiac myosin binding protein-C (cMyBP-C282 and cMyBP-C273) were increased and cardiac troponin I (cTnI23/24) was reduced in HP. Importantly, NOS1 or PKG inhibition reduced cMyBP-C273 and cTnI23/24 and reversed myofilament Ca2+ sensitivity. These results reveal that NOS1 is up-regulated in LV myocytes from HP and exerts positive lusitropic effect by modulating myofilament Ca2+ sensitivity through phosphorylation of key regulators in sarcomere

    RNA‐Peptide nanoplexes drug DNA damage pathways in high‐grade serous ovarian tumors

    Get PDF
    Abstract DNA damaging chemotherapy is a cornerstone of current front‐line treatments for advanced ovarian cancer (OC). Despite the fact that a majority of these patients initially respond to therapy, most will relapse with chemo‐resistant disease; therefore, adjuvant treatments that synergize with DNA‐damaging chemotherapy could improve treatment outcomes and survival in patients with this deadly disease. Here, we report the development of a nanoscale peptide‐nucleic acid complex that facilitates tumor‐specific RNA interference therapy to chemosensitize advanced ovarian tumors to frontline platinum/taxane therapy. We found that the nanoplex‐mediated silencing of the protein kinase, MK2, profoundly sensitized mouse models of high‐grade serous OC to cytotoxic chemotherapy by blocking p38/MK2‐dependent cell cycle checkpoint maintenance. Combined RNAi therapy improved overall survival by 37% compared with platinum/taxane chemotherapy alone and decreased metastatic spread to the lungs without observable toxic side effects. These findings suggest (a) that peptide nanoplexes can serve as safe and effective delivery vectors for siRNA and (b) that combined inhibition of MK2 could improve treatment outcomes in patients currently receiving frontline chemotherapy for advanced OC

    Determination of Malignant and Invasive Predictors in Branch Duct Type Intraductal Papillary Mucinous Neoplasms of the Pancreas: A Suggested Scoring Formula

    Get PDF
    Prediction of malignancy or invasiveness of branch duct type intraductal papillary mucinous neoplasm (Br-IPMN) is difficult, and proper treatment strategy has not been well established. The authors investigated the characteristics of Br-IPMN and explored its malignancy or invasiveness predicting factors to suggest a scoring formula for predicting pathologic results. From 1994 to 2008, 237 patients who were diagnosed as Br-IPMN at 11 tertiary referral centers in Korea were retrospectively reviewed. The patients' mean age was 63.1 ± 9.2 yr. One hundred ninty-eight (83.5%) patients had nonmalignant IPMN (81 adenoma, 117 borderline atypia), and 39 (16.5%) had malignant IPMN (13 carcinoma in situ, 26 invasive carcinoma). Cyst size and mural nodule were malignancy determining factors by multivariate analysis. Elevated CEA, cyst size and mural nodule were factors determining invasiveness by multivariate analysis. Using the regression coefficient for significant predictors on multivariate analysis, we constructed a malignancy-predicting scoring formula: 22.4 (mural nodule [0 or 1]) + 0.5 (cyst size [mm]). In invasive IPMN, the formula was expressed as invasiveness-predicting score = 36.6 (mural nodule [0 or 1]) + 32.2 (elevated serum CEA [0 or 1]) + 0.6 (cyst size [mm]). Here we present a scoring formula for prediction of malignancy or invasiveness of Br-IPMN which can be used to determine a proper treatment strategy

    Occurrence and characterization of oseltamivir-resistant influenza virus in children between 2007-2008 and 2008-2009 seasons

    Get PDF
    PurposeThere was a global increase in the prevalence of oseltamivir-resistant influenza viruses during the 2007-2008 influenza season. This study was conducted to investigate the occurrence and characteristics of oseltamivir-resistant influenza viruses during the 2007-2008 and 2008-2009 influenza seasons among patients who were treated with oseltamivir (group A) and those that did not receive oseltamivir (group B).MethodsA prospective study was conducted on 321 pediatric patients who were hospitalized because of influenza during the 2007-2008 and 2008-2009 influenza seasons. Drug resistance tests were conducted on influenza viruses isolated from 91 patients.ResultsThere was no significant difference between the clinical characteristics of groups A and B during both seasons. Influenza A/H1N1, isolated from both groups A and B during the 2007-2008 and 2008-2009 periods, was not resistant to zanamivir. However, phenotypic analysis of the virus revealed a high oseltamivir IC50 range and that H275Y substitution of the neuraminidase (NA) gene and partial variation of the hemagglutinin (HA) gene did not affect its antigenicity to the HA vaccine even though group A had a shorter hospitalization duration and fewer lower respiratory tract complications than group B. In addition, there was no significant difference in the clinical manifestations between oseltamivir-susceptible and oseltamivir-resistant strains of influenza A/H1N1.ConclusionEstablishment of guidelines to efficiently treat influenza with oseltamivir, a commonly used drug for treating influenza in Korean pediatric patients, and a treatment strategy with a new therapeutic agent is required

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P &lt; 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p
    corecore