317 research outputs found

    TAZ Suppresses NFAT5 Activity through Tyrosine Phosphorylation

    Get PDF
    Transcriptional coactivator with PDZ-binding motif (TAZ) physically interacts with a variety of transcription factors and modulates their activities involved in cell proliferation and mesenchymal stem cell differentiation. TAZ is highly expressed in the kidney, and a deficiency of this protein results in multiple renal cysts and urinary concentration defects; however, the molecular functions of TAZ in renal cells remain largely unknown. In this study, we examined the effects of osmotic stress on TAZ expression and activity in renal cells. We found that hyperosmotic stress selectively increased protein phosphorylation at tyrosine 316 of TAZ and that this was enhanced by c-Abl activation in response to hyperosmotic stress. Interestingly, phosphorylated TAZ physically interacted with nuclear factor of activated T cells 5 (NFAT5), a major osmoregulatory transcription factor, and subsequently suppressed DNA binding and transcriptional activity of NFAT5. Furthermore, TAZ deficiency elicited an increase in NFAT5 activity in vitro and in vivo, which then reverted to basal levels following restoration of wild-type TAZ but not mutant TAZ (Y316F). Collectively, the data suggest that TAZ modulates cellular responses to hyperosmotic stress through fine-tuning of NFAT5 activity via tyrosine phosphorylation.open3

    Reproducibility and diagnostic performance of the vascular index of superb microvascular imaging in real-time breast ultrasonography for evaluating breast masses

    Get PDF
    Purpose This study aimed to evaluate the reproducibility and diagnostic performance of a quantitative parameter of superb microvascular imaging (SMI) in real-time breast ultrasonography (US) for differentiating benign from malignant breast masses. Methods Eighty-seven breast masses in 75 patients who underwent both B-mode US and SMI before US-guided core needle biopsy were included in this study. Two radiologists performed B-mode US and measured the vascular index (VI) of SMI respectively for each lesion in real time. Intraobserver and interobserver agreements were analyzed for the VI of SMI. The diagnostic performance of B-mode US using the Breast Imaging Reporting and Database System lexicon and combined use with the VI of SMI was evaluated compared to pathology. Results The median VI of malignant masses (n=32) was significantly higher than that of benign masses (n=55) (7.6% and 2.6%, respectively; P<0.001). The intraobserver agreement for VI was excellent regardless of the pathology, size, or depth of the lesion. The interobserver agreement for VI was excellent regardless of the presence of a measurement interval. The interobserver agreement for the final diagnostic decision was improved by combining B-mode US and VI (κ=0.883) in comparison with B-mode US only (κ=0.617). Adding VI led to significant improvements in the specificity (87.2% vs. 52.7%, 83.6% vs. 49.0%), accuracy (89.7% vs. 69.3%, 84.0% vs. 65.9%) and positive predictive value (81.5% vs. 55.1%, 75.6% vs. 52.6%) of B-mode US for both observers compared with B-mode US alone (all, P=0.001). Conclusion The VI of SMI for real-time breast US is highly reproducible and leads to improved diagnostic performance for differentiating between benign and malignant breast lesions in combination with B-mode US

    Crystal structure of the DNA binding domain of the transcription factor T-bet suggests simultaneous recognition of distant genome sites

    Get PDF
    The transcription factor T-bet (Tbox protein expressed in T cells) is one of the master regulators of both the innate and adaptive immune responses. It plays a central role in T-cell lineage commitment, where it controls the T[subscript H]1 response, and in gene regulation in plasma B-cells and dendritic cells. T-bet is a member of the Tbox family of transcription factors; however, T-bet coordinately regulates the expression of many more genes than other Tbox proteins. A central unresolved question is how T-bet is able to simultaneously recognize distant Tbox binding sites, which may be located thousands of base pairs away. We have determined the crystal structure of the Tbox DNA binding domain (DBD) of T-bet in complex with a palindromic DNA. The structure shows a quaternary structure in which the T-bet dimer has its DNA binding regions splayed far apart, making it impossible for a single dimer to bind both sites of the DNA palindrome. In contrast to most other Tbox proteins, a single T-bet DBD dimer binds simultaneously to identical half-sites on two independent DNA. A fluorescence-based assay confirms that T-bet dimers are able to bring two independent DNA molecules into close juxtaposition. Furthermore, chromosome conformation capture assays confirm that T-bet functions in the direct formation of chromatin loops in vitro and in vivo. The data are consistent with a looping/synapsing model for transcriptional regulation by T-bet in which a single dimer of the transcription factor can recognize and coalesce distinct genetic elements, either a promoter plus a distant regulatory element, or promoters on two different genes.United States. National Institutes of Health (P01-AI056296

    Crystal structure of the DNA binding domain of the transcription factor T-bet suggests simultaneous recognition of distant genome sites

    Get PDF
    The transcription factor T-bet (Tbox protein expressed in T cells) is one of the master regulators of both the innate and adaptive immune responses. It plays a central role in T-cell lineage commitment, where it controls the TH1 response, and in gene regulation in plasma B-cells and dendritic cells. T-bet is a member of the Tbox family of transcription factors; however, T-bet coordinately regulates the expression of many more genes than other Tbox proteins. A central unresolved question is how T-bet is able to simultaneously recognize distant Tbox binding sites, which may be located thousands of base pairs away. We have determined the crystal structure of the Tbox DNA binding domain (DBD) of T-bet in complex with a palindromic DNA. The structure shows a quaternary structure in which the T-bet dimer has its DNA binding regions splayed far apart, making it impossible for a single dimer to bind both sites of the DNA palindrome. In contrast to most other Tbox proteins, a single T-bet DBD dimer binds simultaneously to identical half-sites on two independent DNA. A fluorescence-based assay confirms that T-bet dimers are able to bring two independent DNA molecules into close juxtaposition. Furthermore, chromosome conformation capture assays confirm that T-bet functions in the direct formation of chromatin loops in vitro and in vivo. The data are consistent with a looping/synapsing model for transcriptional regulation by T-bet in which a single dimer of the transcription factor can recognize and coalesce distinct genetic elements, either a promoter plus a distant regulatory element, or promoters on two different genes

    Life-Threatening Acute Hyponatremia with Generalized Seizure Induced by Low-Dose Cyclophosphamide in a Patient with Breast Cancer

    Get PDF
    Cyclophosphamide is commonly used in the treatment of malignant diseases. Symptomatic severe hyponatremia induced by low-dose cyclophosphamide is very uncommon worldwide. Recently we experienced a case of a 56-year-old woman with breast cancer who developed severe hyponatremia with generalized seizure after the first cycle of adjuvant chemotherapy with doxorubicin and cyclophosphamide. Her laboratory test showed a serum sodium of 116 mmol/L. Her hyponatremia was initially treated with hypertonic saline solution and furosemide. She completely recovered without neurological deficits after slow correction of the serum sodium concentration over two days. Clinicians must always keep in mind that life-threatening acute hyponatremia can be induced by intravenous cyclophosphamide during chemotherapy, even if the dosage is low

    Comparison of Factors Associated with Atypical Symptoms in Younger and Older Patients with Acute Coronary Syndromes

    Get PDF
    Patients with acute coronary syndromes (ACS) who are accompanied by atypical symptoms are frequently misdiagnosed and under-treated. This study was conducted to examine and compare the factors associated with atypical symptoms other than chest pain in younger (<70 yr) and older (≥70 yr) patients with first-time ACS. Data were obtained from the electronic medical records of the patients (n=931) who were newly diagnosed as ACS and hospitalized from 2005 to 2006. The 7.8% (n=49) of the younger patients and 13.4% (n=41) of the older patients were found to have atypical symptoms. Older patients were more likely to complain of indigestion or abdominal discomfort (P=0.019), nausea and/or vomiting (P=0.040), and dyspnea (P<0.001), and less likely to have chest pain (P=0.007) and pains in the arm and shoulder (P=0.018). A logistic regression analysis showed that after adjustment made for the gender and ACS type, diabetes and hyperlipidemia significantly predicted atypical symptoms in the younger patients. In the older patients, the co-morbid conditions such as stroke or chronic obstructive pulmonary disease were positive predictors. Health care providers need to have an increased awareness of possible presence of ACS in younger persons with diabetes and older persons with chronic concomitant diseases when evaluating patients with no chest pain

    Saponin Inhibits Hepatitis C Virus Propagation by Up-regulating Suppressor of Cytokine Signaling 2

    Get PDF
    Saponins are a group of naturally occurring plant glycosides which possess a wide range of pharmacological properties, including anti-tumorigenic and antiviral activities. To investigate whether saponin has anti-hepatitis C virus (HCV) activity, we examined the effect of saponin on HCV replication. HCV replication was efficiently inhibited at a concentration of 10 µg/ml of saponin in cell culture grown HCV (HCVcc)-infected cells. Inhibitory effect of saponin on HCV replication was verified by quantitative real-time PCR, reporter assay, and immunoblot analysis. In addition, saponin potentiated IFN-α-induced anti-HCV activity. Moreover, saponin exerted antiviral activity even in IFN-α resistant mutant HCVcc-infected cells. To investigate how cellular genes were regulated by saponin, we performed microarray analysis using HCVcc-infected cells. We demonstrated that suppressor of cytokine signaling 2 (SOCS2) protein level was distinctively increased by saponin, which in turn resulted in inhibition of HCV replication. We further showed that silencing of SOCS2 resurrected HCV replication and overexpression of SOCS2 suppressed HCV replication. These data imply that saponin inhibits HCV replication via SOCS2 signaling pathway. These findings suggest that saponin may be a potent therapeutic agent for HCV patients
    corecore