291 research outputs found
Extended nonlocal chiral-quark model for the heavy-light quark systems
In this talk, we report the recent progress on constructing a
phenomenological effective model for the heavy-light quark systems, which
consist of (u,d,s,c,b) quarks, i.e. extended nonlocal chiral-quark model
(ExNLChQM). We compute the heavy-meson weak-decay constants to verify the
validity of the model. From the numerical results, it turns out that (f_D, f_B,
f_{D_s}, f_{B_s})=(207.54,208.13,262.56,262.39) MeV. These values are in
relatively good agreement with experimental data and various theoretical
estimations.Comment: 3 pages, 4 figures, Talk given at the 20th International IUPAP
Conference on Few-Body Problems in Physics (FB20), 20~25 August 2012,
Fukuoka, Japa
Tilt Modulus and Angle-Dependent Flux Lattice Melting in the Lowest Landau Level Approximation
For a clean high-T superconductor, we analyze the Lawrence-Doniach free
energy in a tilted magnetic field within the lowest Landau level (LLL)
approximation. The free energy maps onto that of a strictly -axis field, but
with a reduced interlayer coupling. We use this result to calculate the tilt
modulus of a vortex lattice and vortex liquid. The vortex contribution
to can be expressed in terms of the squared -axis Josephson plasmon
frequency . The transverse component of the field has very
little effect on the position of the melting curve.Comment: 8 pages, 2 figures, accepted for publication in Physical Review B
(Rapid Communications
Work function changes in the double layered manganite La1.2Sr1.8Mn2O7
We have investigated the behaviour of the work function of La1.2Sr1.8Mn2O7 as
a function of temperature by means of photoemission. We found a decrease of 55
+/- 10 meV in going from 60 K to just above the Curie temperature (125 K) of
the sample. Above T_C the work function appears to be roughly constant. Our
results are exactly opposite to the work function changes calculated from the
double-exchange model by Furukawa, but are consistent with other measurements.
The disagreement with double-exchange can be explained using a general
thermodynamic relation valid for second order transitions and including the
extra processes involved in the manganites besides double-exchange interaction.Comment: 6 pages, 4 figures included in tex
Meson Cloud of the Nucleon in Polarized Semi-Inclusive Deep-Inelastic Scattering
We investigate the possibility of identifying an explicit pionic component of
the nucleon through measurements of polarized baryon fragments
produced in deep-inelastic leptoproduction off polarized protons, which may
help to identify the physical mechanism responsible for the breaking of the
Gottfried sum rule. The pion-exchange model predicts highly correlated
polarizations of the and target proton, in marked contrast with
the competing diquark fragmentation process. Measurement of asymmetries in
polarized production may also reveal the presence of a kaon cloud in
the nucleon.Comment: 23 pages REVTeX, 7 uuencoded figures, accepted for publication in
Zeit. Phys.
Light-Front Approach for Heavy Pentaquark Transitions
Assuming the two diquark structure for the pentaquark state as advocated in
the Jaffe-Wilczek model, there exist exotic parity-even anti-sextet and
parity-odd triplet heavy pentaquark baryons. The theoretical estimate of
charmed and bottom pentaquark masses is quite controversial and it is not clear
whether the ground-state heavy pentaquark lies above or below the strong-decay
threshold. We study the weak transitions of heavy pentaquark states using the
light-front quark model. In the heavy quark limit, heavy-to-heavy pentaquark
transition form factors can be expressed in terms of three Isgur-Wise
functions: two of them are found to be normalized to unity at zero recoil,
while the third one is equal to 1/2 at the maximum momentum transfer, in
accordance with the prediction of the large-Nc approach or the quark model.
Therefore, the light-front model calculations are consistent with the
requirement of heavy quark symmetry. Numerical results for form factors and
Isgur-Wise functions are presented. Decay rates of the weak decays Theta_b+ to
Theta_c0 pi+ (rho+), Theta_c0 to Theta+ pi- (rho-), Sigma'_{5b}+ to
Sigma'_{5c}0 pi+ (rho+) and Sigma'_{5c}0 to N_8+ pi- (rho-) with Theta_Q,
Sigma'_{5Q} and N_8 being the heavy anti-sextet, heavy triplet and light
octet pentaquarks, respectively, are obtained. For weakly decaying Theta_b+ and
Theta_c0, the branching ratios of Theta_b+ to Theta_c0 pi+, Theta_c0 to Theta+
pi- are estimated to be at the level of 10^{-3} and a few percents,
respectively.Comment: 33 pages, 3 figures, version to be published in Phys. Rev.
The Spin-Dependent Structure Functions of Nuclei in the Meson-Nucleon Theory
A theoretical approach to the investigation of spin-dependent structure
functions in deep inelastic scattering of polarized leptons off polarized
nuclei, based on the effective meson-nucleon theory and operator product
expansion method, is proposed and applied to deuteron and . The explicit
forms of the moments of the deuteron and spin-dependent structure
functions are found and numerical estimates of the influence of nuclear
structure effects are presented.Comment: 42 pages revtex, 7 postscript figures available from above e-mail
upon request. Perugia preprint DFUPG 92/9
Cosmological Dynamics of Phantom Field
We study the general features of the dynamics of the phantom field in the
cosmological context. In the case of inverse coshyperbolic potential, we
demonstrate that the phantom field can successfully drive the observed current
accelerated expansion of the universe with the equation of state parameter
. The de-Sitter universe turns out to be the late time attractor
of the model. The main features of the dynamics are independent of the initial
conditions and the parameters of the model. The model fits the supernova data
very well, allowing for at 95 % confidence level.Comment: Typos corrected. Some clarifications and references added. To appear
in Physical Review
Measurements of the Sigma_c^0 and Sigma_c^{++} Mass Splittings
Using a high statistics sample of photoproduced charmed particles from the
FOCUS experiment at Fermilab (FNAL-E831), we measure the mass splittings of the
charmed baryons Sigma_c^0 and Sigma_c^{++}. We find M(Sigma_c^0 - Lambda_c^+) =
167.38 +/- 0.21 +/- 0.13 MeV/c^2 and M(Sigma_c^++ - Lambda_c^+) = 167.35 +/-
0.19 +/- 0.12 MeV/c^2 with samples of 362 +/- 36 and 461 +/- 39 events,
respectively. We measure the isospin mass splitting M(Sigma_c^++ - Sigma_c^0)
to be -0.03 +/- 0.28 +/- 0.11 Mev/c^2. The first errors are statistical and the
second are systematic.Comment: 10 pages, 2 figure
Light flavor asymmetry of nucleon sea
The light flavor antiquark distributions of the nucleon sea are calculated in
the effective chiral quark model and compared with experimental results. The
contributions of the flavor-symmetric sea-quark distributions and the nuclear
EMC effect are taken into account to obtain the ratio of Drell-Yan cross
sections , which can match well
with the results measured in the FermiLab E866/NuSea experiment. The calculated
results also match the measured from different
experiments, but unmatch the behavior of derived
indirectly from the measurable quantity
by the FermiLab E866/NuSea
Collaboration at large . We suggest to measure again
at large from precision experiments with careful experimental data
treatment. We also propose an alternative procedure for experimental data
treatment.Comment: 10 pages, 8 figures, final version to appear in EPJ
- …