107 research outputs found

    Nitric oxide induces MUC5AC mucin in respiratory epithelial cells through PKC and ERK dependent pathways

    Get PDF
    BACKGROUND: Nitric oxide (NO) is generally increased during inflammatory airway diseases. This increased NO stimulates the secretion of mucin from the goblet cell and submucosal glands but the mechanism is still unknown precisely. In this study, we investigated potential signaling pathways involving protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in the NO-induced MUC5AC mucin gene and protein expression in A549 cells. METHODS: Nitric oxide was donated to the A549 cells by NOR-1. MUC5AC mucin levels were assayed by enzyme-linked immunosorbent assay (ELISA). MUC5AC promoter activity was determined by measuring luciferase activity after the lysing the transfected cells. Activation of PKC isoforms were measured by assessing the distribution of the enzyme between cytosolic and membrane fractions using immunoblotting. Immunoblotting experiments using a monoclonal antibody specific to PKC isoforms were performed in the cytosol and membrane fractions from A549 cells. Western blot analysis for pERK and p38 were performed using the corresponding antibodies from the cell lysates after donating NO to the A549 cells by NOR-1. RESULTS: The transcriptional activity of MUC5AC promoter was maximal at the concentration of 0.1 mM NOR-1 for 1 hour incubation in transfected A549 cells. (±)-(E)-methyl-2-((E)-hydroxyimino)-5-nitro-6-methoxy-3-hexenamide (NOR-1) markedly displaced the protein kinase C (PKC)α and PKCδ from the cytosol to the membrane. Furthermore, the PKC-α,βinhibitors, GÖ6976 (10 nM) and PKCδ inhibitors, rottlerin (4 μM) inhibited the NOR-1 induced migration of PKCα and PKCδ respectively. NOR-1 also markedly increased the MUC5AC promoter activity and mRNA expression, mucin synthesis and ERK1/2 phosphorylation. The PKC inhibitors also inhibited the NOR-1 induced MUC5AC mRNA and MUC5AC protein synthesis by inhibiting the activation of PKCα and PKCδ with ERK1/2 pathways. CONCLUSION: Exogenous NO induced the MUC5AC mucin gene and protein through the PKCα and PKCδ – ERK pathways in A549 cells. Inhibition of PKC attenuated NO-mediated MUC5AC mucin synthesis. In view of this findings, PKC inhibitors might be useful in the treatment of bronchial asthma and chronic bronchitis patients where NO and mucus are increased in the bronchial airways

    Intrapulmonary Teratoma Presenting with Trichoptysis

    Get PDF

    A new mosaic der(18)t(1;18)(q32.1;q21.3) with developmental delay and facial dysmorphism

    Get PDF
    We report the case of a 22-month-old boy with a new mosaic partial unbalanced translocation of 1q and 18q. The patient was referred to our Pediatric Department for developmental delay. He showed mild facial dysmorphism, physical growth retardation, a hearing disability, and had a history of patent ductus arteriosus. White matter abnormality on brain magnetic resonance images was also noted. His initial routine chromosomal analysis revealed a normal 46,XY karyotype. In a microarray-based comparative genomic hybridization (aCGH) analysis, subtle copy number changes in 1q32.1–q44 (copy gain) and 18q21.33–18q23 (copy loss) suggested an unbalanced translocation of t(1;18). Repeated chromosomal analysis revealed a low-level mosaic translocation karyotype of 46,XY,der(18)t(1;18)(q32.1;q21.3)[12]/46,XY[152]. Because his parents had normal karyotypes, his translocation was considered to be de novo. The abnormalities observed in aCGH were confirmed by metaphase fluorescent in situ hybridization. We report this patient as a new karyotype presenting developmental delay, facial dysmorphism, cerebral dysmyelination, and other abnormalities

    Obstructive Fibrinous Tracheal Pseudomembrane After Tracheal Intubation: A Case Report

    Get PDF
    Obstructive fibrinous tracheal pseudomembrane is a rare, but potentially fatal complication associated with endotracheal intubation. It has been known that the formation of tracheal pseudomembrane is related with intracuff pressure during endotracheal intubation or infectious cause. But in the patient described in this case, pseudomembrane formation in the trachea was associated with subglottic epithelial trauma or caustic injuries to the trachea caused by aspirated gastric contents during intubation rather than tracheal ischemia due to high cuff pressure. We report a patient with obstructive fibrinous tracheal pseudomembrane after endotracheal intubation who presented with dyspnea and stridor and was treated successfully with mechanical removal using rigid bronchoscopy

    A cooperative biphasic MoOx–MoPx promoter enables a fast-charging lithium-ion battery

    Get PDF
    The realisation of fast-charging lithium-ion batteries with long cycle lifetimes is hindered by the uncontrollable plating of metallic Li on the graphite anode during high-rate charging. Here we report that surface engineering of graphite with a cooperative biphasic MoOx–MoPx promoter improves the charging rate and suppresses Li plating without compromising energy density. We design and synthesise MoOx–MoPx/graphite via controllable and scalable surface engineering, i.e., the deposition of a MoOx nanolayer on the graphite surface, followed by vapour-induced partial phase transformation of MoOx to MoPx. A variety of analytical studies combined with thermodynamic calculations demonstrate that MoOx effectively mitigates the formation of resistive films on the graphite surface, while MoPx hosts Li+ at relatively high potentials via a fast intercalation reaction and plays a dominant role in lowering the Li+ adsorption energy. The MoOx–MoPx/graphite anode exhibits a fast-charging capability (<10 min charging for 80% of the capacity) and stable cycling performance without any signs of Li plating over 300 cycles when coupled with a LiNi0.6Co0.2Mn0.2O2 cathode. Thus, the developed approach paves the way to the design of advanced anode materials for fast-charging Li-ion batteries. © 2021, The Author(s).1

    A Case of Hyperglycemic Hyperosmolar State Associated with Graves' Hyperthyroidism: A Case Report

    Get PDF
    Hyperglycemic hyperosmolar state (HHS) is an acute complication mostly occurring in elderly type 2 diabetes mellitus (DM). Thyrotoxicosis causes dramatic increase of glycogen degradation and/or gluconeogenesis and enhances breakdown of triglycerides. Thus, in general, it augments glucose intolerance in diabetic patients. A 23-yr-old female patient with Graves' disease and type 2 DM, complying with methimazole and insulin injection, had symptoms of nausea, polyuria and generalized weakness. Her serum glucose and osmolarity were 32.7 mM/L, and 321 mosm/kg, respectively. Thyroid function tests revealed that she had more aggravated hyperthyroid status; 0.01 mU/L TSH and 2.78 pM/L free T3 (reference range, 0.17-4.05, 0.31-0.62, respectively) than when she was discharged two weeks before (0.12 mU/L TSH and 1.41 pM/L free T3). Being diagnosed as HHS and refractory Graves' hyperthyroidism, she was treated successfully with intravenous fluids, insulin and high doses of methimazole (90 mg daily). Here, we described the case of a woman with Graves' disease and type 2 DM developing to HHS

    Inflammatory and Remodeling Events in Asthma with Chronic Exposure to House Dust Mites: A Murine Model

    Get PDF
    Although animal models with ovalbumin have been used to study chronic asthma, there are difficulties in inducing recurrence as well as in maintaining chronic inflammation in this system. Using a murine model of house dust mite (HDM)-induced bronchial asthma, we examined the airway remodeling process in response to the chronic exposure to HDM. During the seventh and twelfth weeks of study, HDM were inhaled through the nose for three consecutive days and airway responsiveness was measured. Twenty-four hours later, bronchoalveolar lavage and histological examination were performed. The degree of overproduction of mucus, subepithelial fibrosis, and the thickness of the peribronchial smooth muscle in the experimental group was clearly increased compared to the control group. In addition, HDM-exposed mice demonstrated severe airway hyperreactivity to methacholine. In the bronchoalveolar lavage fluid, the number of total cells and eosinophils was increased; during the twelfth week, the number of neutrophils increased in the experimental group. With regard to changes in cytokines, the concentrations of IL-4, IL-13, and transforming growth factor-beta (TGF-β) were increased in the experimental group. The data suggest that eosinophils, IL-4, IL-13, and TGF-β might play an important role in the airway remodeling process and that neutrophils may be involved with increased exposure time

    Time Sequence of Airway Remodeling in a Mouse Model of Chronic Asthma: the Relation with Airway Hyperresponsiveness

    Get PDF
    During the course of establishing an animal model of chronic asthma, we tried to elucidate the time sequence of airway hyperresponsiveness (AHR), airway inflammation, airway remodeling, and associated cytokines. Seven-week-old female BALB/c mice were studied as a chronic asthma model using ovalbumin (OVA). After sensitization, mice were exposed twice weekly to aerosolized OVA, and were divided into three groups depending on the duration of 4 weeks, 8 weeks, and 12 weeks. At each time point, airway responsiveness, inflammatory cells, cytokines in bronchoalveolar lavage fluids (BALF), serum OVA-specific IgE, IgG1, IgG2a, and histological examination were carried out. AHR to methacholine, increased levels of OVA-specific IgG1 and IgG2a, and goblet cell hyperplasia were continuously sustained at each time point of weeks. In contrast, we observed a time-dependent decrease in serum OVA-specific IgE, BALF eosinophils, BALF cytokines such as IL-13, transforming growth factor-beta1, and a time-dependent increase in BALF promatrix metalloproteinase-9 and peribronchial fibrosis. In this OVA-induced chronic asthma model, we observed airway remodelings as well as various cytokines and inflammatory cells being involved in different time-dependent manners. However, increased airway fibrosis did not directly correlate with a further increase in airway hyperresponsiveness
    corecore