252 research outputs found

    Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii

    Get PDF
    Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion

    Human CD34+ CD133+ Hematopoietic Stem Cells Cultured with Growth Factors Including Angptl5 Efficiently Engraft Adult NOD-SCID Il2rγ−/− (NSG) Mice

    Get PDF
    Increasing demand for human hematopoietic stem cells (HSCs) in clinical and research applications necessitates expansion of HSCs in vitro. Before these cells can be used they must be carefully evaluated to assess their stem cell activity. Here, we expanded cord blood CD34+ CD133+ cells in a defined medium containing angiopoietin like 5 and insulin-like growth factor binding protein 2 and evaluated the cells for stem cell activity in NOD-SCID Il2rg−/− (NSG) mice by multi-lineage engraftment, long term reconstitution, limiting dilution and serial reconstitution. The phenotype of expanded cells was characterized by flow cytometry during the course of expansion and following engraftment in mice. We show that the SCID repopulating activity resides in the CD34+ CD133+ fraction of expanded cells and that CD34+ CD133+ cell number correlates with SCID repopulating activity before and after culture. The expanded cells mediate long-term hematopoiesis and serial reconstitution in NSG mice. Furthermore, they efficiently reconstitute not only neonate but also adult NSG recipients, generating human blood cell populations similar to those reported in mice reconstituted with uncultured human HSCs. These findings suggest an expansion of long term HSCs in our culture and show that expression of CD34 and CD133 serves as a marker for HSC activity in human cord blood cell cultures. The ability to expand human HSCs in vitro should facilitate clinical use of HSCs and large-scale construction of humanized mice from the same donor for research applications.Singapore-MIT Alliance for Research and Technology ( Infectious Diseases research grant

    Gliding Motility of Babesia bovis Merozoites Visualized by Time-Lapse Video Microscopy

    Get PDF
    BACKGROUND: Babesia bovis is an apicomplexan intraerythrocytic protozoan parasite that induces babesiosis in cattle after transmission by ticks. During specific stages of the apicomplexan parasite lifecycle, such as the sporozoites of Plasmodium falciparum and tachyzoites of Toxoplasma gondii, host cells are targeted for invasion using a unique, active process termed "gliding motility". However, it is not thoroughly understood how the merozoites of B. bovis target and invade host red blood cells (RBCs), and gliding motility has so far not been observed in the parasite. METHODOLOGY/PRINCIPAL FINDINGS: Gliding motility of B. bovis merozoites was revealed by time-lapse video microscopy. The recorded images revealed that the process included egress of the merozoites from the infected RBC, gliding motility, and subsequent invasion into new RBCs. The gliding motility of B. bovis merozoites was similar to the helical gliding of Toxoplasma tachyzoites. The trails left by the merozoites were detected by indirect immunofluorescence assay using antiserum against B. bovis merozoite surface antigen 1. Inhibition of gliding motility by actin filament polymerization or depolymerization indicated that the gliding motility was driven by actomyosin dependent process. In addition, we revealed the timing of breakdown of the parasitophorous vacuole. Time-lapse image analysis of membrane-stained bovine RBCs showed formation and breakdown of the parasitophorous vacuole within ten minutes of invasion. CONCLUSIONS/SIGNIFICANCE: This is the first report of the gliding motility of B. bovis. Since merozoites of Plasmodium parasites do not glide on a substrate, the gliding motility of B. bovis merozoites is a notable finding

    RON5 is critical for organization and function of the Toxoplasma moving junction complex

    Get PDF
    Apicomplexans facilitate host cell invasion through formation of a tight-junction interface between parasite and host plasma membranes called the moving junction (MJ). A complex of the rhoptry neck proteins RONs 2/4/5/8 localize to the MJ during invasion where they are believed to provide a stable anchoring point for host penetration. During the initiation of invasion, the preformed MJ RON complex is injected into the host cell where RON2 spans the host plasma membrane while RONs 4/5/8 localize to its cytosolic face. While much attention has been directed toward an AMA1-RON2 interaction supposed to occur outside the cell, little is known about the functions of the MJ RONs positioned inside the host cell. Here we provide a detailed analysis of RON5 to resolve outstanding questions about MJ complex organization, assembly and function during invasion. Using a conditional knockdown approach, we show loss of RON5 results in complete degradation of RON2 and mistargeting of RON4 within the parasite secretory pathway, demonstrating that RON5 plays a key role in organization of the MJ RON complex. While RON8 is unaffected by knockdown of RON5, these parasites are unable to invade new host cells, providing the first genetic demonstration that RON5 plays a critical role in host cell penetration. Although invasion is not required for injection of rhoptry effectors into the host cytosol, parasites lacking RON5 also fail to form evacuoles suggesting an intact MJ complex is a prerequisite for secretion of rhoptry bulb contents. Additionally, while the MJ has been suggested to function in egress, disruption of the MJ complex by RON5 depletion does not impact this process. Finally, functional complementation of our conditional RON5 mutant reveals that while proteolytic separation of RON5 N- and C-terminal fragments is dispensable, a portion of the C-terminal domain is critical for RON2 stability and function in invasion

    Small-molecule inhibition of a depalmitoylase enhances Toxoplasma host-cell invasion.

    Get PDF
    Although there have been numerous advances in our understanding of how apicomplexan parasites such as Toxoplasma gondii enter host cells, many of the signaling pathways and enzymes involved in the organization of invasion mediators remain poorly defined. We recently performed a forward chemical-genetic screen in T. gondii and identified compounds that markedly enhanced infectivity. Although molecular dissection of invasion has benefited from the use of small-molecule inhibitors, the mechanisms underlying induction of invasion by small-molecule enhancers have never been described. Here we identify the Toxoplasma ortholog of human APT1, palmitoyl protein thioesterase-1 (TgPPT1), as the target of one class of small-molecule enhancers. Inhibition of this uncharacterized thioesterase triggered secretion of invasion-associated organelles, increased motility and enhanced the invasive capacity of tachyzoites. We demonstrate that TgPPT1 is a bona fide depalmitoylase, thereby establishing an important role for dynamic and reversible palmitoylation in host-cell invasion by T. gondii

    The Diverse and Dynamic Nature of Leishmania Parasitophorous Vacuoles Studied by Multidimensional Imaging

    Get PDF
    An important area in the cell biology of intracellular parasitism is the customization of parasitophorous vacuoles (PVs) by prokaryotic or eukaryotic intracellular microorganisms. We were curious to compare PV biogenesis in primary mouse bone marrow-derived macrophages exposed to carefully prepared amastigotes of either Leishmania major or L. amazonensis. While tight-fitting PVs are housing one or two L. major amastigotes, giant PVs are housing many L. amazonensis amastigotes. In this study, using multidimensional imaging of live cells, we compare and characterize the PV biogenesis/remodeling of macrophages i) hosting amastigotes of either L. major or L. amazonensis and ii) loaded with Lysotracker, a lysosomotropic fluorescent probe. Three dynamic features of Leishmania amastigote-hosting PVs are documented: they range from i) entry of Lysotracker transients within tight-fitting, fission-prone L. major amastigote-housing PVs; ii) the decrease in the number of macrophage acidic vesicles during the L. major PV fission or L. amazonensis PV enlargement; to iii) the L. amazonensis PV remodeling after homotypic fusion. The high content information of multidimensional images allowed the updating of our understanding of the Leishmania species-specific differences in PV biogenesis/remodeling and could be useful for the study of other intracellular microorganisms

    Expression of a protease-resistant insulin-like growth factor-binding protein-4 inhibits tumour growth in a murine model of breast cancer

    Get PDF
    BACKGROUND: Insulin-like growth factor 1 (IGF1) promotes breast cancer and disease progression. Bioavailability of IGF1 is modulated by IGF-binding proteins (IGFBPs). IGFBP4 inhibits IGF1 activity but cleavage by pregnancy-associated plasma protein-A (PAPP-A) protease releases active IGF1. METHODS: Expression of IGF pathway components and PAPP-A was assessed by western blot or RT-PCR. IGFBP4 (dBP4) resistant to PAPP-A cleavage, but retaining IGF-binding capacity, was used to block IGF activity in vivo. 4T1.2 mouse mammary adenocarcinoma cells transfected with empty vector, vector expressing wild-type IGFBP4 or vector expressing dBP4 were implanted in the mammary fat pad of BALB/c mice and tumour growth was assessed. Tumour angiogenesis and endothelial cell apoptosis were assessed by immunohistochemistry. RESULTS: 4T1.2 cells expressed the IGF1R receptor and IGFBP4. PAPP-A was expressed within mammary tumours but not by 4T1.2 cells. Proliferation and vascular endothelial growth factor (VEGF) production by 4T1.2 cells was increased by IGF1(E3R) (recombinant IGF1 resistant to binding by IGFBPs) but not by wild-type IGF1. IGF1-stimulated microvascular endothelial cell proliferation was blocked by recombinant IGFBP4. 4T1.2 tumours expressing dBP4 grew significantly more slowly than controls or tumours expressing wild-type IGFBP4. Inhibition of tumour growth by dBP4 was accompanied by the increased endothelial cell apoptosis. CONCLUSION: Protease-resistant IGFBP4 blocks IGF activity, tumour growth and angiogenesis

    Adenylyl Cyclase α and cAMP Signaling Mediate Plasmodium Sporozoite Apical Regulated Exocytosis and Hepatocyte Infection

    Get PDF
    Malaria starts with the infection of the liver of the host by Plasmodium sporozoites, the parasite form transmitted by infected mosquitoes. Sporozoites migrate through several hepatocytes by breaching their plasma membranes before finally infecting one with the formation of an internalization vacuole. Migration through host cells induces apical regulated exocytosis in sporozoites. Here we show that apical regulated exocytosis is induced by increases in cAMP in sporozoites of rodent (P. yoelii and P. berghei) and human (P. falciparum) Plasmodium species. We have generated P. berghei parasites deficient in adenylyl cyclase α (ACα), a gene containing regions with high homology to adenylyl cyclases. PbACα-deficient sporozoites do not exocytose in response to migration through host cells and present more than 50% impaired hepatocyte infectivity in vivo. These effects are specific to ACα, as re-introduction of ACα in deficient parasites resulted in complete recovery of exocytosis and infection. Our findings indicate that ACα and increases in cAMP levels are required for sporozoite apical regulated exocytosis, which is involved in sporozoite infection of hepatocytes

    The Leishmania donovani Lipophosphoglycan Excludes the Vesicular Proton-ATPase from Phagosomes by Impairing the Recruitment of Synaptotagmin V

    Get PDF
    We recently showed that the exocytosis regulator Synaptotagmin (Syt) V is recruited to the nascent phagosome and remains associated throughout the maturation process. In this study, we investigated the possibility that Syt V plays a role in regulating interactions between the phagosome and the endocytic organelles. Silencing of Syt V by RNA interference revealed that Syt V contributes to phagolysosome biogenesis by regulating the acquisition of cathepsin D and the vesicular proton-ATPase. In contrast, recruitment of cathepsin B, the early endosomal marker EEA1 and the lysosomal marker LAMP1 to phagosomes was normal in the absence of Syt V. As Leishmania donovani promastigotes inhibit phagosome maturation, we investigated their potential impact on the phagosomal association of Syt V. This inhibition of phagolysosome biogenesis is mediated by the virulence glycolipid lipophosphoglycan, a polymer of the repeating Galβ1,4Manα1-PO4 units attached to the promastigote surface via an unusual glycosylphosphatidylinositol anchor. Our results showed that insertion of lipophosphoglycan into ganglioside GM1-containing microdomains excluded or caused dissociation of Syt V from phagosome membranes. As a consequence, L. donovani promatigotes established infection in a phagosome from which the vesicular proton-ATPase was excluded and which failed to acidify. Collectively, these results reveal a novel function for Syt V in phagolysosome biogenesis and provide novel insight into the mechanism of vesicular proton-ATPase recruitment to maturing phagosomes. We also provide novel findings into the mechanism of Leishmania pathogenesis, whereby targeting of Syt V is part of the strategy used by L. donovani promastigotes to prevent phagosome acidification
    • …
    corecore