546 research outputs found

    Phosphorylation of Glutamine Synthetase on Threonine 301 Contributes to Its Inactivation During Epilepsy

    Get PDF
    The astrocyte-specific enzyme glutamine synthetase (GS), which catalyzes the amidation of glutamate to glutamine, plays an essential role in supporting neurotransmission and in limiting NH4+ toxicity. Accordingly, deficits in GS activity contribute to epilepsy and neurodegeneration. Despite its central role in brain physiology, the mechanisms that regulate GS activity are poorly defined. Here, we demonstrate that GS is directly phosphorylated on threonine residue 301 (T301) within the enzyme’s active site by cAMP-dependent protein kinase (PKA). Phosphorylation of T301 leads to a dramatic decrease in glutamine synthesis. Enhanced T301 phosphorylation was evident in a mouse model of epilepsy, which may contribute to the decreased GS activity seen during this trauma. Thus, our results highlight a novel molecular mechanism that determines GS activity under both normal and pathological conditions.</p

    Genetic Effects on Transcriptome Profiles in Colon Epithelium Provide Functional Insights for Genetic Risk Loci

    Get PDF
    Background & aims: The association of genetic variation with tissue-specific gene expression and alternative splicing guides functional characterization of complex trait-associated loci and may suggest novel genes implicated in disease. Here, our aims were as follows: (1) to generate reference profiles of colon mucosa gene expression and alternative splicing and compare them across colon subsites (ascending, transverse, and descending), (2) to identify expression and splicing quantitative trait loci (QTLs), (3) to find traits for which identified QTLs contribute to single-nucleotide polymorphism (SNP)-based heritability, (4) to propose candidate effector genes, and (5) to provide a web-based visualization resource. Methods: We collected colonic mucosal biopsy specimens from 485 healthy adults and performed bulk RNA sequencing. We performed genome-wide SNP genotyping from blood leukocytes. Statistical approaches and bioinformatics software were used for QTL identification and downstream analyses. Results: We provided a complete quantification of gene expression and alternative splicing across colon subsites and described their differences. We identified thousands of expression and splicing QTLs and defined their enrichment at genome-wide regulatory regions. We found that part of the SNP-based heritability of diseases affecting colon tissue, such as colorectal cancer and inflammatory bowel disease, but also of diseases affecting other tissues, such as psychiatric conditions, can be explained by the identified QTLs. We provided candidate effector genes for multiple phenotypes. Finally, we provided the Colon Transcriptome Explorer web application. Conclusions: We provide a large characterization of gene expression and splicing across colon subsites. Our findings provide greater etiologic insight into complex traits and diseases influenced by transcriptomic changes in colon tissue

    Dependence of Intramyocardial Pressure and Coronary Flow on Ventricular Loading and Contractility: A Model Study

    Get PDF
    The phasic coronary arterial inflow during the normal cardiac cycle has been explained with simple (waterfall, intramyocardial pump) models, emphasizing the role of ventricular pressure. To explain changes in isovolumic and low afterload beats, these models were extended with the effect of three-dimensional wall stress, nonlinear characteristics of the coronary bed, and extravascular fluid exchange. With the associated increase in the number of model parameters, a detailed parameter sensitivity analysis has become difficult. Therefore we investigated the primary relations between ventricular pressure and volume, wall stress, intramyocardial pressure and coronary blood flow, with a mathematical model with a limited number of parameters. The model replicates several experimental observations: the phasic character of coronary inflow is virtually independent of maximum ventricular pressure, the amplitude of the coronary flow signal varies about proportionally with cardiac contractility, and intramyocardial pressure in the ventricular wall may exceed ventricular pressure. A parameter sensitivity analysis shows that the normalized amplitude of coronary inflow is mainly determined by contractility, reflected in ventricular pressure and, at low ventricular volumes, radial wall stress. Normalized flow amplitude is less sensitive to myocardial coronary compliance and resistance, and to the relation between active fiber stress, time, and sarcomere shortening velocity

    Some cultural consequences in Spain of the Spanish Invasion of Morocco 1859-60

    Get PDF
    This article argues is a contribution to the study of interrelationships between colonialism, art, and literature in the nineteenth century. The article argues that the Spanish invasion of Morocco in 1859 led to contradictions and tensions within liberal nationalism, not least because of concerns about the tensions between the need for military reassertion of Spain and the respect for the independence of nations. This led to some reconfiguration of Spanish intellectuals' already complex relationship with North Africa and Islam. A major, perhaps surprising consequence of this reconfiguration, was some equation of Moroccan identity with a monotonous surface that was resistant to the gaze. In consequence, the Catalan painter Fortuny's crucial experience of Morocco led him to value near blank surfaces, and thus to make a major contribution to the origins of modern art
    corecore