42 research outputs found

    ¹H NMR based metabolomics of CSF and blood serum: a metabolic profile for a transgenic rat model of Huntington disease

    Get PDF
    AbstractHuntington disease (HD) is a hereditary brain disease. Although the causative gene has been found, the exact mechanisms of the pathogenesis are still unknown. Recent investigations point to metabolic and energetic dysfunctions in HD neurons.Both univariate and multivariate analyses were used to compare proton nuclear magnetic resonance spectra of serum and cerebrospinal fluid (CSF) taken from presymptomatic HD transgenic rats and their wild-type littermates. N-acetylaspartate (NAA), was found to be significantly decreased in the serum of HD rats compared to wild-type littermates. Moreover, in the serum their levels of glutamine, succinic acid, glucose and lactate are significantly increased as well. An increased concentration of lactate and glucose is also found in CSF. There is a 1:1 stoichiometry coupling glucose utilization and glutamate cycling. The observed increase in the glutamine concentration, which indicates a shutdown in the neuronal-glial glutamate-glutamine cycling, results therefore in an increased glucose concentration. The elevated succinic acid concentration might be due to an inhibition of succinate dehydrogenase, an enzyme linked to the mitochondrial respiratory chain and TCA cycle. Moreover, reduced levels of NAA may reflect an impairment of mitochondrial energy production. In addition, the observed difference in lactate supports a deficiency of oxidative energy metabolism in rats transgenic for HD as well.The observed metabolic alterations seem to be more profound in serum than in CSF in presymptomatic rats. All findings suggest that even in presymptomatic rats, a defect in energy metabolism is already apparent. These results support the hypothesis of mitochondrial energy dysfunction in HD

    Synthesized BiVO4 was by the co-precipitation method for Rhodamine B degradation under visible light

    Get PDF
    Recently, BiVO4 photocatalysts has been received much attention in field of catalysts. Because it can be used to degrade harmful organic catalysts in visible light, irradiation produces CO2, H2O and less harmful organic matter. In this study, we have successfully synthesized a BiVO4 photocatalysts via co-precipitation method in the presence of urea and different calcined temperatures. The survey calcined temperatures as 300°C; 350°C; 400°C and 450°C. The obtained materials were characterized by Scanning electron microscope (SEM) and X-ray diffraction (XRD). The photocatalytic activity was evaluated by the photocatalytic degradation of rhodamine B (RhB) degradation under visible compact Philip lamp (40W) light irradiation. The result indicates that all samples calcined are monoclinic scheelite structure of BiVO4. The BiVO4-350°C sample performed the best in the photodegradation of RhB

    A facile synthesis and properties of bismuth vanadate (BiVO4) photocatalyst by hydrothermal method

    Get PDF
    In this study, BiVO4 photocatalysts were synthesized by hydrothermal method using Bi(NO3)3 5H2O and NH4VO3 as raw materials followed by calcination at different temperatures in the range from 350 °C to 600 °C. The as-synthesized BiVO4 samples were characterized by a number of physicochemical techniques including X-ray diffraction (XRD), Raman analysis, Scanning Electron Microscopy (SEM), and UV-Visible (UV-Vis) light diffuse reflectance spectrophotometry. The effect of temperatures calcination on structure, surface morphology, visible-light photocatalytic activity and light absorption performance of BiVO4 was discussed in details

    Quality Comparison of Y-shape Joints by Tube Hydroforming with and Without Counterforce

    Full text link
    The design capability, strength, and structural rigidity provided by tube hydroforming (THF) are successfully used in many applications to produce high-strength parts and assemblies with improved mechanical properties, optimized service life, and weight features. In tubular metal forming, output parameters such as branch height, distribution of tube wall material thickness, distribution of damage factor, metal flow, effective stress, and effective strain significantly affect the quality of the product after the forming process. Therefore, this paper aims to evaluate the manufacturing quality of Y-shape joints from AISI304 material steel tube through output parameters of THF process with and without counter punch force on numerical simulation base. The Finite Element Method (FEM) has become an established feature of metal forming technology. The objective of FEM is to replace costly and elaborate experimental testing with Fast, low-cost computer simulation. The simulation study uses finite element method-based virtual prototyping techniques to characterize output parameters, gain insight into strain mechanics, and predict mechanical properties of shaped components. The research results are presented clearly and unambiguously through the evaluation of 7 criteria to compare the quality of the specimens hydroformed by two surveyed cases and optimize the crucial input process parameters. And these data can be applied in experiments, more efficient product and process design, calculation, and control of input parameters avoiding costly trial and error in industrial production. The findings can help technologists optimize process parameters in the hydroforming process of products with protrusion from a tubular blan

    Levels of Toxocara

    No full text

    Composite photocatalysts containing MIL-53(Fe) as a heterogeneous photo-Fenton catalyst for the decolorization of Rhodamine B under visible light irradiation

    No full text
    The development of composite photocatalyst is a promising direction for improving photocatalytic performance of decomposition of organic dyes. This study aimed to fabricate two composite photocatalysts using either Fe3O4 or NiFe2O4 with MIL-53(Fe) as heterogeneous catalysts for the degradation of rhodamine B (RhB) under visible light irradiation by a 40 W compact fluorescent lamp. The physicochemical, the surface, the magnetic and the energy band gap of the photocatalyst were characterized by XRD, FT-IR, Raman, FE-SEM, UV-vis DRS, Brunauer-Emmett-Teller (BET), and VSM. From the photocatalytic activities test results, the NiFe2O4-doped MIL-53(Fe) sample expressed a higher photocatalytic degradation capacity of RhB than that of Fe3O4/MIL-53(Fe) sample, significantly better than that of the bare of Fe3O4, NiFe2O4, and MIL-53(Fe)

    Visible light induced enhanced photocatalytic degradation of industrial effluents (rhodamine B) using BiVO4 nanoparticles

    Get PDF
    This study investigates the photodegradation of the organic dye Rhodamine B (RhB) under visible light irradiation by BiVO4 photocatalysts synthesized hydrothermal method. A RhB solution (100 mL, 15 ppm) was degraded in 20 min using the BiVO4 photocatalysts with visible light irradiation. The effect of temperatures calcination on visible-light photocatalytic activity and light absorption performance of BiVO4 was discussed in details. The results showed that BiVO4 sample calcined at 450 °C exhibited the highest photocatalytic performance on the degradation of a Rhodamine B solution. The RhB degradation by the BiVO4 catalyst is 62.38% after 200 min of simulated solar irradiation
    corecore