83 research outputs found

    Pion and Kaon Distribution Amplitudes from lattice QCD: towards the continuum limit

    Get PDF
    We present the current status of a non-perturbative lattice calculation of the moments of the pion and kaon distribution amplitudes by the RQCD collaboration. Our investigation is carried out using Nf=2+1N_f=2+1 dynamical, non-perturbatively O(a)-improved Wilson fermions on the CLS ensembles with 5 different lattice spacings and pion masses down to the physical pion mass. A combined continuum and chiral extrapolation to the physical point is performed along two independent quark mass trajectories simultaneously. We employ momentum smearing in order to decrease the contamination by excited states and increase statistical precision.Comment: Proceedings of the 36th Annual International Symposium on Lattice Field Theory - LATTICE201

    Commensal-Related Changes in the Epidermal Barrier Function Lead to Alterations in the Benzo[a]Pyrene Metabolite Profile and Its Distribution in 3D Skin

    Get PDF
    Polycyclic aromatic hydrocarbons (PAH) such as benzo[a]pyrene (B[a]P) are among the most abundant environmental pollutants, resulting in continuous exposure of human skin and its microbiota. However, effects of the latter on B[a]P toxicity, absorption, metabolism, and distribution in humans remain unclear. Here, we demonstrate that the skin microbiota does metabolize B[a]P on and in human skin in situ, using a recently developed commensal skin model. In this model, microbial metabolism leads to high concentrations of known microbial B[a]P metabolites on the surface as well as in the epidermal layers. In contrast to what was observed for uncolonized skin, B[a]P and its metabolites were subject to altered rates of skin penetration and diffusion, resulting in up to 58% reduction of metabolites recovered from basal culture medium. The results indicate the reason for this altered behavior to be a microbially induced strengthening of the epidermal barrier. Concomitantly, colonized models showed decreased formation and penetration of the ultimate carcinogen B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), leading, in consequence, to fewer BPDE-DNA adducts being formed. Befittingly, transcript and expression levels of key proteins for repairing environmentally induced DNA damage such as xeroderma pigmentosum complementation group C (XPC) were also found to be reduced in the commensal models, as was expression of B[a]P-associated cytochrome P450-dependent monooxygenases (CYPs). The results show that the microbiome can have significant effects on the toxicology of external chemical impacts. The respective effects rely on a complex interplay between microbial and host metabolism and microbe-host interactions, all of which cannot be adequately assessed using single-system studies. IMPORTANCE Exposure to xenobiotics has repeatedly been associated with adverse health effects. While the majority of reported cases relate to direct substance effects, there is increasing evidence that microbiome-dependent metabolism of xenobiotic substances likewise has direct adverse effects on the host. This can be due to microbial biotransformation of compounds, interaction between the microbiota and the host’s endogenous detoxification enzymes, or altered xenobiotic bioavailability. However, there are hardly any studies addressing the complex interplay of such interactions in situ and less so in human test systems. Using a recently developed microbially competent three-dimensional (3D) skin model, we show here for the first time how commensal influence on skin physiology and gene transcription paradoxically modulates PAH toxicity

    Light-cone distribution amplitudes of the baryon octet

    Get PDF
    We present results of the first ab initio lattice QCD calculation of the normalization constants and first moments of the leading twist distribution amplitudes of the full baryon octet, corresponding to the small transverse distance limit of the associated S-wave light-cone wave functions. The P-wave (higher twist) normalization constants are evaluated as well. The calculation is done using Nf=2+1N_f=2+1 flavors of dynamical (clover) fermions on lattices of different volumes and pion masses down to 222 MeV. Significant SU(3) flavor symmetry violation effects in the shape of the distribution amplitudes are observed.Comment: Update to the version published in JHE

    Light-cone distribution amplitudes of octet baryons from lattice QCD

    Full text link
    We present lattice QCD results for the wave function normalization constants and the first moments of the distribution amplitudes for the lowest-lying baryon octet. The analysis is based on a large number of Nf=2+1N_f=2+1 ensembles comprising multiple trajectories in the quark mass plane including physical pion (and kaon) masses, large volumes, and, most importantly, five different lattice spacings down to a=0.039fma=0.039\,\mathrm{fm}. This allows us to perform a controlled extrapolation to the continuum and infinite volume limits by a simultaneous fit to all available data. We demonstrate that the formerly observed violation of flavor symmetry breaking constraints can, indeed, be attributed to discretization effects that vanish in the continuum limit

    Migration of polycyclic aromatic hydrocarbons from a polymer surrogate through the stratum corneum layer of the skin

    Get PDF
    In this study, we determined partition (Ksc/m) and diffusion (Dsc) coefficients of five different polycyclic aromatic hydrocarbons (PAH) migrating from squalane into and through the stratum corneum (s.c.) layer of the skin. Carcinogenic PAH have previously been detected in numerous polymer-based consumer products, especially those dyed with carbon black. Upon dermal contact with these products, PAH may penetrate into and through the viable layers of the skin by passing the s.c. and thus may become bioavailable. Squalane, a frequent ingredient in cosmetics, has also been used as a polymer surrogate matrix in previous studies. Ksc/m and Dsc are relevant parameters for risk assessment because they allow estimating the potential of a substance to become bioavailable upon dermal exposure. We developed an analytical method involving incubation of pigskin with naphthalene, anthracene, pyrene, benzo[a]pyrene and dibenzo[a,h]pyrene in Franz diffusion cell assays under quasi-infinite dose conditions. PAH were subsequently quantified within individual s.c. layers by gas chromatography coupled to tandem mass spectrometry. The resulting PAH depth profiles in the s.c. were fitted to a solution of Fick’s second law of diffusion, yielding Ksc/m and Dsc. The decadic logarithm logKsc/m ranged from −0.43 to +0.69 and showed a trend to higher values for PAH with higher molecular masses. Dsc, on the other hand, was similar for the four higher molecular mass PAH but about 4.6-fold lower than for naphthalene. Moreover, our data suggests that the s.c./viable epidermis boundary layer represents the most relevant barrier for the skin penetration of higher molecular mass PAH. Finally, we empirically derived a mathematical description of the concentration depth profiles that better fits our data. We correlated the resulting parameters to substance specific constants such as the logarithmic octanol-water partition coefficient logP, Ksc/m and the removal rate at the s.c./viable epidermis boundary layer

    Goethite Mineral Dissolution to Probe the Chemistry of Radiolytic Water in Liquid-Phase Transmission Electron Microscopy

    Get PDF
    Liquid-Phase Transmission Electron Microscopy (LP-TEM) enables in situ observations of the dynamic behavior of materials in liquids at high spatial and temporal resolution. During LP-TEM, incident electrons decompose water molecules into highly reactive species. Consequently, the chemistry of the irradiated aqueous solution is strongly altered, impacting the reactions to be observed. However, the short lifetime of these reactive species prevent their direct study. Here, the morphological changes of goethite during its dissolution are used as a marker system to evaluate the influence of radiation on the changes in solution chemistry. At low electron flux density, the morphological changes are equivalent to those observed under bulk acidic conditions, but the rate of dissolution is higher. On the contrary, at higher electron fluxes, the morphological evolution does not correspond to a unique acidic dissolution process. Combined with kinetic simulations of the steady state concentrations of generated reactive species in the aqueous medium, the results provide a unique insight into the redox and acidity interplay during radiation induced chemical changes in LP-TEM. The results not only reveal beam-induced radiation chemistry via a nanoparticle indicator, but also open up new perspectives in the study of the dissolution process in industrial or natural settings

    Tailoring the Acidity of Liquid Media with Ionizing Radiation: Rethinking the Acid–Base Correlation beyond pH

    Get PDF
    Advanced in situ techniques based on electrons and X-rays are increasingly used to gain insights into fundamental processes in liquids. However, probing liquid samples with ionizing radiation changes the solution chemistry under observation. In this work, we show that a radiation-induced decrease in pH does not necessarily correlate to an increase in acidity of aqueous solutions. Thus, pH does not capture the acidity under irradiation. Using kinetic modeling of radiation chemistry, we introduce alternative measures of acidity (radiolytic acidity π* and radiolytic ion product KW*), that account for radiation-induced alterations of both H+ and OH– concentration. Moreover, we demonstrate that adding pH-neutral solutes such as LiCl, LiBr, or LiNO3 can trigger a significant change in π*. This provides a huge parameter space to tailor the acidity for in situ experiments involving ionizing radiation, as present in synchrotron facilities or during liquid-phase electron microscopy

    Trendy e-cigarettes enter Europe: chemical characterization of JUUL pods and its aerosols

    Get PDF
    The popularity and the high nicotine content of the American pod e-cigarette JUUL have raised many concerns. To comply with European law, the nicotine concentration in the liquids of the European version, which has been recently released on the market, is limited to below 20 mg/mL. This limit can possibly be circumvented by technological adjustments that increase vaporization and consequently, elevate nicotine delivery. In this study, we compare vapor generation and nicotine delivery of the initial European version, a modified European version, and the original American high-nicotine variant using a machine vaping set-up. Additionally, benzoic acid and carbonyl compounds are quantified in the aerosol. Further, concentrations of nicotine, benzoic acid, propylene glycol, and glycerol, along with the density and pH value of JUUL e-liquids have been assessed. Whereas the initial European version did not compensate for the low nicotine content in the liquid, we provide evidence for an increased vaporization by the modified European version. As a consequence, nicotine delivery per puff approximates the American original. Notably, this is not associated with an increased generation of carbonyl compounds. Our data suggest a similar addictiveness of the enhanced European version and the original American product
    corecore