
P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
1
0
7

Pion and Kaon Distribution Amplitudes from lattice
QCD: towards the continuum limit

Gunnar S. Bali, Vladimir M. Braun, Meinulf Göckeler, Michael Gruber, Fabian
Hutzler, Piotr Korcyl∗†, Andreas Schäfer, Philipp Wein
Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
E-mail: piotr.korcyl@uj.edu.pl

We present the current status of a non-perturbative lattice calculation of the moments of the pion
and kaon distribution amplitudes by the RQCD collaboration. Our investigation is carried out
using N f = 2 + 1 dynamical, non-perturbatively O(a)-improved Wilson fermions on the CLS
ensembles with 5 different lattice spacings and pion masses down to the physical pion mass.
A combined continuum and chiral extrapolation to the physical point is performed along two
independent quark mass trajectories simultaneously. We employ momentum smearing in order to
decrease the contamination by excited states and increase statistical precision.

The 36th Annual International Symposium on Lattice Field Theory - LATTICE2018
22-28 July, 2018
Michigan State University, East Lansing, Michigan, USA.

∗Speaker.
†Present address: M. Smoluchowski Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348

Kraków, Poland

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jagiellonian Univeristy Repository

https://core.ac.uk/display/322848659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:piotr.korcyl@uj.edu.pl


P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
1
0
7

Pion and Kaon Distribution Amplitudes from lattice QCD: towards the continuum limit Piotr Korcyl

1. Introduction

Pion and kaon distribution amplitudes (DA) are examples of non-perturbative objects describ-
ing the internal structure of hadrons. The importance of such functions in QCD comes from fac-
torization theorems which allow to disentangle a generic cross-section into a process specific hard
part calculable within a perturbative framework and a process-independent non-perturbative part.
The latter can be either extracted from experimental data if such is available or estimated numeri-
cally using lattice QCD techniques. The pion DA which is investigated in this study describes the
quark-antiquark momentum composition of the lowest Fock state with only a single valence quark-
antiquark pair. More precisely it is the quantum amplitude that the pion moving with longitudinal
momentum p is built of a pair of quark and antiquark moving with momentum xp and (1− x)p
respectively. Defined as it is, it uses a light-cone formulation of QCD, and hence is not directly
amenable to numerical studies on euclidean lattices. A traditional way to circumvent this limitation
is to study its moments which can be expressed as matrix elements of local operators with deriva-
tives between a vacuum and a pion state. So far most of the attention was devoted to the second
moment of the pion DA [1, 2, 3]. In this contribution we summarize our ongoing efforts aiming
at obtaining a first continuum estimate of that moment. We build upon our earlier experience [3]
improved by the use of momentum smearing [4] which we have investigated in application to the
case of pion DA moments in Ref.[5].

This contribution has the following structure. In the next section we briefly recall the formu-
lation that we employ to estimate the second moment of the pseudoscalar meson DA. In section 3
we describe the gauge configuration ensembles analyzed so far. Next, we discuss some details of
our current strategy to extract estimates of the pion and kaon DA second moment in section 4. We
present our chiral and continuum extrapolation formulae in section 5 as well as some preliminary
results for some of the extrapolated quantities. We conclude in section 6.

2. Pseudoscalar meson distribution amplitudes

In this work we consider the pion and kaon distribution amplitudes. In particular, the pion DA
is defined through the following light-like correlation

〈0|d̄(z2n)/nγ5[z2n,z1n]u(z1n)|π(p)〉= i fπ(p ·n)
∫ 1

0
dxe−i(z1x+z2(1−x))p·n

φπ(x,µ2). (2.1)

Neglecting isospin breaking effects leads to a function φπ(x) which is symmetric under the inter-
change of momentum fraction x→ (1− x),

φπ(x,µ2) = φπ(1− x,µ2). (2.2)

Therefore, only the even moments of the momentum fraction difference, ξ = x− (1− x),

〈ξ 2n〉=
∫ 1

0
dx(2x−1)2n

φπ(x,µ2), (2.3)

which can be estimated on the lattice, are different from zero. Alternatively, using approximate
conformal symmetry, one can re-parametrize the pion DA in terms of Gegenbauer polynomials
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with coefficients aπ
2n,

φπ(x,µ2) = 6x(1− x)
[
1+∑

n
aπ

2n(µ)C
3/2
2n (2x−1)

]
. (2.4)

In this study we are interested in the second moments, either 〈ξ 2〉 or a2. Both are renormalization
scheme dependent and therefore we quote their MS values at the renormalization scale of 2 GeV.

In order to express the non-local, light-like operators of Eq. (2.1), one Taylor expands them
and obtains local operators with derivatives. The general formulae were discussed in Ref. [3], here
we just recall the two lattice operators which are relevant for the second moment of the pion DA
(round brackets meaning symmetrization of indices and trace subtraction),

O±ρµν(x) = d̄(x)
[←−

D (µ
←−
D ν ±2

←−
D (µ
−→
D ν +

−→
D (µ
−→
D ν

]
γρ)γ5u(x). (2.5)

Their bare matrix elements between the vacuum and a pion state are, up to renormalization effects,
proportional to

〈0|O−ρµν(x)|π〉 ∼ 〈[x− (1− x)]2〉= 〈ξ 2〉, (2.6)

〈0|O+
ρµν(x)|π〉 ∼ 〈[x+(1− x)]2〉= 〈12〉. (2.7)

In order to extract the above matrix elements from a lattice simulation we estimate two kinds of
two-point correlation functions

Cρ(t,p) = a3
∑
x

e−ipx〈Oρ(x, t)Jγ5(0)〉, (2.8)

C±ρµν(t,p) = a3
∑
x

e−ipx〈O±ρµν(x, t)Jγ5(0)〉, (2.9)

which we use to construct the following ratios

R±ρµν ,σ (t,p) =
C±ρµν(t,p)
Cσ (t,p)

∼
pρ pµ pν

pσ

R±. (2.10)

By construction R±ρµν ,σ (t,p) should exhibit plateaux for large t separations from which the values
R± can be extracted by fitting. Eventually, R± can be combined with renormalization constants in
order to provide estimates of 〈ξ 2〉 and a2,

〈ξ 2〉MS = ζ11R−+ζ12R+, (2.11)

aMS
2 =

7
12

[
5ζ11R−+(5ζ12−ζ22)R+

]
. (2.12)

The ζi j renormalization constants are estimated non-perturbatively in the RI’/SMOM scheme and
matched to the MS scheme at NLO [3].

3. CLS ensembles

In this project we employ the gauge field ensembles generated by the CLS consortium. Some
of the ensembles are described in Refs. [6] and [7] and a scale setting was presented in Ref. [8].
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We take advantage of several features of these ensembles. They cover a wide range of lattice
spacings, from 0.086 fm down to 0.039 fm, with 5 different values of the lattice spacing. The pion
mass is varied from 450 MeV down to its physical value. These two facts and the availability of
three different trajectories in the plane of light and strange quark masses (a symmetric line where
ml = ms, a line where the sum of quark masses is constant ms + 2ml ≈ const and a line where
the strange quark mass is kept at its physical value) provide us with a firm handle on both the
continuum and chiral extrapolations. The landscape of used ensembles in the plane of a2 and mπ is
shown in figure 1.
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Figure 1: Landscape of CLS ensembles as a function of the lattice spacing a2 and pion mass mπ along the
three trajectories in the ml−ms plane. Yellow ensembles are still in production. Not all lattices shown above
are part of the present analysis. In our forthcoming publication we will give more detail on the ensembles.
From left to right the constant quark mass sum, constant strange quark mass, symmetric trajectories are
shown.

4. Improvements

In the definition of the ratios R±ρµν ,σ one has the freedom to choose the indices µ , ν , ρ and
σ . In order to avoid complicated mixing patterns the indices µ , ν , ρ should all be different. We
are now employing a combination in which the derivative is never acting along the time direction,
which exhibits a clear advantage in the signal quality and in terms of ground state overlap over all
other combinations. As a demonstration we show in figure 2 the data for different index combi-
nations for the pion and kaon correlation functions C+

ρµν(t,p) for the ensemble with a = 0.086 fm
and mπ ≈ 350 MeV.

5. Chiral and continuum extrapolations

The value of 〈ξ 2〉 or a2 in the continuum and for physical quark masses has to be obtained
from an extrapolation from the measured data points. In this study we perform a combined fit to all
data points (all lattice spacings and all pion/kaon masses along the three trajectories) using as an
Ansatz a continuum ChPT formula which does not exhibit chiral logs [9] supplemented with cutoff
effects parametrization

〈ξ 2〉π =
(
1+ c0a+ c1aM2

+ cπ
2 aδM2)(〈ξ 2〉0 +AM2−2 δA δM2), (5.1)

〈ξ 2〉K =
(
1+ c0a+ c1aM2

+ cK
2 aδM2)(〈ξ 2〉0 +AM2

+ δA δM2), (5.2)
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Figure 2: Comparison of signal for the correlation function C+
ρµν(t,p) Eq. (2.9) as a function of time for

different combinations of Lorentz indices.

with A, δA being low energy constants and

M2
=

2m2
K +m2

π

3
, δM2 = 2m2

K−2m2
π . (5.3)

The fit is performed for both the pion and kaon second moment simultaneously. Altogether 7
parameters are fitted: the second moments in the chiral limit 〈ξ 2〉0, two low energy constants A and
δA and four coefficients parametrizing discretization effects c0, c1, cπ

2 and cK
2 .

As a check of the entire procedure we show the extrapolated value of the renormalized O+

operator which according to Eq. (2.7) is equal to 1 in the continuum limit. However, the measured
value can differ from 1 as can be already seen of the right panel of figure 2 where the expectation
value is approximately 0.91. We show the result of our fit in figure 3. In the left panel data
obtained with the old set of Lorentz indices was extrapolated yielding a value significantly different
from 1 with a large uncertainty. On the contrary, when we extrapolate the data where we exclude
combinations when the derivative acts in the time direction, the extrapolated value is compatible
with 1 and the uncertainty is considerably smaller. This result is a nice confirmation of the validity
of the fitting Ansatz.
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Figure 3: Continuum and chirally extrapolated value of the renormalized O+ operator Eq. (2.7) for the old
and new combination of Lorentz indices in the left and right panel respectively.

We apply the same extrapolation procedure to the combination of matrix elements yielding
the second moments of the pion and kaon DAs and obtain their continuum values. Plot in figure 4
shows the extrapolation as a function of the pion mass along the constant sum of quark masses tra-
jectory at a = 0.064 fm. Our preliminary results are in the same ballpark as the previous estimates
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from N f = 2 simulations [3], however not all uncertainties have been carefully taken into account
yet. We are completing our analysis using all the ensembles from the CLS landscape and the final
results will be published soon.
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Figure 4: Extrapolation of 〈ξ 2〉 along the constant trace (left panel) and constant strange quark mass (right
panel) trajectories at β = 3.55.

6. Conclusions

In this contribution we reported on the status of our project aiming at the non-perturbative
determination of second moment of pion and kaon DAs in the continuum. We briefly discussed our
framework and pointed out several improvements upon previous studies which allow us to control
both the chiral and continuum extrapolations. As an example we showed the case of the 〈12〉
expectation value which gives a value in agreement with continuum expectations with a reasonable
small uncertainty. We are now investigating systematic effects affecting our outcomes and final
results should appear soon.

Finally, we would like to mention a recent advancement in the study of hadron structure func-
tions which allows to circumvent the limitation of euclidean lattices and study directly the x depen-
dence of structure functions from purely space-like correlation functions. Several implementations
of these ideas have already been discussed in the context of the pion DA. The Authors of [10]
implemented the Large Momentum Effective Theory approach following the work of Ref. [11]
and extracted the pion DA directly in x-space. In Ref. [12] and [13] a different, coordinate space
formulation was used [14]. A comparison of the second moments obtained directly from the local
operator method as discussed in this contribution and from these novel techniques will provide
useful crosschecks on the systematic uncertainties hidden in both approaches.

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SFB/TRR
55 and by the polish NCN grant No. UMO-2016/21/B/ ST2/01492. We acknowledge the Inter-
disciplinary Centre for Mathematical and Computational Modelling (ICM) of the University of
Warsaw for computer time on Okeanos (grants No. GA67-12, GA69-20, GA71-26), the PLGRID
consortium for computer time allocation on the Prometheus machine hosted by Cyfronet Krakow
(grants hadronspectrum, nspt, pionda) and the Leibniz Rechenzentrum in Garching for access to the

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
1
0
7

Pion and Kaon Distribution Amplitudes from lattice QCD: towards the continuum limit Piotr Korcyl

coolMUC3 cluster. Additional computations have been carried out on the Regensburg QPACE 2
computer and the QPACE 3 machine of SFB/TRR 55 hosted by the Jülich Supercomputing Centre
(JSC). The authors gratefully acknowledge the computing time granted by the John von Neumann
Institute for Computing (NIC) and provided on the supercomputer JURECA-Booster at JSC.

References

[1] QCDSF/UKQCD Collaboration, V. M. Braun, M. Göckeler, R. Horsley, H. Perlt, D. Pleiter, P. E. L.
Rakow, G. Schierholz, A. Schiller, W. Schroers, H. Stüben, and J. M. Zanotti, Moments of
pseudoscalar meson distribution amplitudes from the lattice, Phys. Rev. D 74 (2006) 074501,
[hep-lat/0606012].

[2] RBC and UKQCD Collaboration, R. Arthur, P. A. Boyle, D. Brömmel, M. A. Donnellan, J. M.
Flynn, A. Jüttner, T. D. Rae, and C. T. C. Sachrajda, Lattice results for low moments of light meson
distribution amplitudes, Phys. Rev. D 83 (2011) 074505, [arXiv:1011.5906].

[3] V. M. Braun, S. Collins, M. Göckeler, P. Pérez-Rubio, A. Schäfer, R. W. Schiel, and A. Sternbeck,
Second moment of the pion light-cone distribution amplitude from lattice qcd, Phys. Rev. D 92 (2015)
014504, [arXiv:1503.03656].

[4] G. S. Bali, B. Lang, B. U. Musch, and A. Schäfer, Novel quark smearing for hadrons with high
momenta in lattice QCD, Phys. Rev. D93 (2016), no. 9 094515, [arXiv:1602.05525].

[5] RQCD Collaboration, G. S. Bali, V. M. Braun, M. Göckeler, M. Gruber, F. Hutzler, P. Korcyl,
B. Lang, and A. Schäfer, Second moment of the pion distribution amplitude with the momentum
smearing technique, Phys. Lett. B774 (2017) 91–97, [arXiv:1705.10236].

[6] M. Bruno et al., Simulation of QCD with N f = 2 + 1 flavors of non-perturbatively improved Wilson
fermions, JHEP 02 (2015) 043, [arXiv:1411.3982].

[7] RQCD Collaboration, G. S. Bali, E. E. Scholz, J. Simeth, and W. Söldner, Lattice simulations with
N f = 2+1 improved Wilson fermions at a fixed strange quark mass, Phys. Rev. D94 (2016), no. 7
074501, [arXiv:1606.09039].

[8] M. Bruno, T. Korzec, and S. Schaefer, Setting the scale for the CLS 2+1 flavor ensembles, Phys. Rev.
D95 (2017), no. 7 074504, [arXiv:1608.08900].

[9] J.-W. Chen, H.-M. Tsai, and K.-C. Weng, Model-independent results for SU(3) violation in twist-3
light-cone distribution functions, Phys. Rev. D73 (2006) 054010, [hep-ph/0511036].

[10] J.-H. Zhang, J.-W. Chen, X. Ji, L. Jin, and H.-W. Lin, Pion distribution amplitude from lattice qcd,
Phys. Rev. D 95 (2017) 094514, [arXiv:1702.00008].

[11] X. Ji, Parton physics on a euclidean lattice, Phys. Rev. Lett. 110 (2013) 262002, [1305.1539].

[12] G. S. Bali, V. M. Braun, B. Gläßle, M. Göckeler, M. Gruber, F. Hutzler, P. Korcyl, A. Schäfer,
P. Wein, and J.-H. Zhang, Pion distribution amplitude from Euclidean correlation functions, Eur.
Phys. J. C78 (2018), no. 3 217, [arXiv:1709.04325].

[13] G. S. Bali, V. M. Braun, B. Gläßle, M. Göckeler, M. Gruber, F. Hutzler, P. Korcyl, A. Schäfer,
P. Wein, and J.-H. Zhang, Pion distribution amplitude from Euclidean correlation functions:
Exploring universality and higher twist effects, arXiv:1807.06671.

[14] V. Braun and D. Mueller, Exclusive processes in position space and the pion distribution amplitude,
Eur. Phys. J. C55 (2008) 349–361, [arXiv:0709.1348].

6

http://arxiv.org/abs/hep-lat/0606012
http://arxiv.org/abs/1011.5906
http://arxiv.org/abs/1503.03656
http://arxiv.org/abs/1602.05525
http://arxiv.org/abs/1705.10236
http://arxiv.org/abs/1411.3982
http://arxiv.org/abs/1606.09039
http://arxiv.org/abs/1608.08900
http://arxiv.org/abs/hep-ph/0511036
http://arxiv.org/abs/1702.00008
http://arxiv.org/abs/1305.1539
http://arxiv.org/abs/1709.04325
http://arxiv.org/abs/1807.06671
http://arxiv.org/abs/0709.1348

