6,444 research outputs found

    Solomonoff Induction Violates Nicod's Criterion

    Full text link
    Nicod's criterion states that observing a black raven is evidence for the hypothesis H that all ravens are black. We show that Solomonoff induction does not satisfy Nicod's criterion: there are time steps in which observing black ravens decreases the belief in H. Moreover, while observing any computable infinite string compatible with H, the belief in H decreases infinitely often when using the unnormalized Solomonoff prior, but only finitely often when using the normalized Solomonoff prior. We argue that the fault is not with Solomonoff induction; instead we should reject Nicod's criterion.Comment: ALT 201

    MDL Convergence Speed for Bernoulli Sequences

    Get PDF
    The Minimum Description Length principle for online sequence estimation/prediction in a proper learning setup is studied. If the underlying model class is discrete, then the total expected square loss is a particularly interesting performance measure: (a) this quantity is finitely bounded, implying convergence with probability one, and (b) it additionally specifies the convergence speed. For MDL, in general one can only have loss bounds which are finite but exponentially larger than those for Bayes mixtures. We show that this is even the case if the model class contains only Bernoulli distributions. We derive a new upper bound on the prediction error for countable Bernoulli classes. This implies a small bound (comparable to the one for Bayes mixtures) for certain important model classes. We discuss the application to Machine Learning tasks such as classification and hypothesis testing, and generalization to countable classes of i.i.d. models.Comment: 28 page

    A viscoelastic Rivlin-Ericksen material model applicable to glacier ice

    Get PDF
    We present a viscoelastic constitutive relation which describes transient creep of a modified second grade fluid enhanced with elastic properties of a solid. The material law describes a Rivlin-Ericksen material and is a generalization of existing material laws applied to study the viscoelastic properties of ice. The intention is to provide a formulation tailored to reproduce the viscoelastic behaviour of ice ranging from the instantaneous elastic response, to recoverable deformation, to viscous, stationary flow at the characteristic minimum creep rate associated with the deformation of polycrystalline ice. We numerically solve the problem of a slab of material shearing down a uniformly inclined plate. The equations are made dimensionless in a form in which elastic effects and/or the influence of higher order terms (i.e., strain accelerations) can be compared with viscous creep at the minimum creep rate by means of two dimensionless parameters. We discuss the resulting material behaviour and the features exhibited at different parameter combinations. Also, a viable range of the non-dimensional parameters is estimated in the scale analysis

    Modelling debris flows down general channels

    Get PDF
    This paper is an extension of the single-phase cohesionless dry granular avalanche model over curved and twisted channels proposed by Pudasaini and Hutter (2003). It is a generalisation of the Savage and Hutter (1989, 1991) equations based on simple channel topography to a two-phase fluid-solid mixture of debris material. Important terms emerging from the correct treatment of the kinematic and dynamic boundary condition, and the variable basal topography are systematically taken into account. For vanishing fluid contribution and torsion-free channel topography our new model equations exactly degenerate to the previous Savage-Hutter model equations while such a degeneration was not possible by the Iverson and Denlinger (2001) model, which, in fact, also aimed to extend the Savage and Hutter model. The model equations of this paper have been rigorously derived; they include the effects of the curvature and torsion of the topography, generally for arbitrarily curved and twisted channels of variable channel width. The equations are put into a standard conservative form of partial differential equations. From these one can easily infer the importance and influence of the pore-fluid-pressure distribution in debris flow dynamics. The solid-phase is modelled by applying a Coulomb dry friction law whereas the fluid phase is assumed to be an incompressible Newtonian fluid. Input parameters of the equations are the internal and bed friction angles of the solid particles, the viscosity and volume fraction of the fluid, the total mixture density and the pore pressure distribution of the fluid at the bed. Given the bed topography and initial geometry and the initial velocity profile of the debris mixture, the model equations are able to describe the dynamics of the depth profile and bed parallel depth-averaged velocity distribution from the initial position to the final deposit. A shock capturing, total variation diminishing numerical scheme is implemented to solve the highly non-linear equations. Simulation results present the combined effects of curvature, torsion and pore pressure on the dynamics of the flow over a general basal topography. These simulation results reveal new physical insight of debris flows over such non-trivial topography. Model equations are applied to laboratory avalanche and debris-flow-flume tests. Very good agreement between the theory and experiments is established

    Disentangling Genetic and Prenatal Maternal Effects on Offspring Size and Survival

    Get PDF
    This is the author accepted manuscript. The final version is available from University of Chicago Press via the DOI in this record.Organizational processes during prenatal development can have long-term effects on an individual's phenotype. Because these early developmental stages are sensitive to environmental influences, mothers are in a unique position to alter their offspring's phenotype by differentially allocating resources to their developing young. However, such prenatal maternal effects are difficult to disentangle from other forms of parental care, additive genetic effects, and/or other forms of maternal inheritance, hampering our understanding of their evolutionary consequences. Here we used divergent selection lines for high and low prenatal maternal investment and their reciprocal line crosses in a precocial bird-the Japanese quail (Coturnix japonica)-to quantify the relative importance of genes and prenatal maternal effects in shaping offspring phenotype. Maternal but not paternal origin strongly affected offspring body size and survival throughout development. Although the effects of maternal egg investment faded over time, they were large at key life stages. Additionally, there was evidence for other forms of maternal inheritance affecting offspring phenotype at later stages of development. Our study is among the first to successfully disentangle prenatal maternal effects from all other sources of confounding variation and highlights the important role of prenatal maternal provisioning in shaping offspring traits closely linked to fitness.The study was financially supported by the Swiss National Science Foundation (PP00P3_128386 and PP00P3_157455 to B.T.)

    Bayesian reinforcement learning with exploration

    No full text
    We consider a general reinforcement learning problem and show that carefully combining the Bayesian optimal policy and an exploring policy leads to minimax sample-complexity bounds in a very general class of (history-based) environments. We also prove lower bounds and show that the new algorithm displays adaptive behaviour when the environment is easier than worst-case

    Extreme State Aggregation Beyond MDPs

    Full text link
    We consider a Reinforcement Learning setup where an agent interacts with an environment in observation-reward-action cycles without any (esp.\ MDP) assumptions on the environment. State aggregation and more generally feature reinforcement learning is concerned with mapping histories/raw-states to reduced/aggregated states. The idea behind both is that the resulting reduced process (approximately) forms a small stationary finite-state MDP, which can then be efficiently solved or learnt. We considerably generalize existing aggregation results by showing that even if the reduced process is not an MDP, the (q-)value functions and (optimal) policies of an associated MDP with same state-space size solve the original problem, as long as the solution can approximately be represented as a function of the reduced states. This implies an upper bound on the required state space size that holds uniformly for all RL problems. It may also explain why RL algorithms designed for MDPs sometimes perform well beyond MDPs.Comment: 28 LaTeX pages. 8 Theorem

    Fermionic Molecular Dynamics for nuclear dynamics and thermodynamics

    Get PDF
    A new Fermionic Molecular Dynamics (FMD) model based on a Skyrme functional is proposed in this paper. After introducing the basic formalism, some first applications to nuclear structure and nuclear thermodynamics are presentedComment: 5 pages, Proceedings of the French-Japanese Symposium, September 2008. To be published in Int. J. of Mod. Phys.
    corecore