81 research outputs found

    Josephson junction transmission lines as tunable artificial crystals

    Full text link
    We investigate one-dimensional Josephson junction arrays with generalized unit cells as a circuit approach to engineer microwave band gaps. An array described by a lattice with a basis can be designed to have a gap in the electromagnetic spectrum, in full analogy to electronic band gaps in diatomic or many-atomic crystals. We derive the dependence of this gap on the array parameters in the linear regime, and suggest experimentally feasible designs to bring the gap below the single junction plasma frequency. The gap can be tuned in a wide frequency range by applying external flux, and it persists in the presence of small imperfections.Comment: 9 pages, 5 figure

    All Six Planets Known to Orbit Kepler-11 Have Low Densities

    Full text link
    The Kepler-11 planetary system contains six transiting planets ranging in size from 1.8 to 4.2 times the radius of Earth. Five of these planets orbit in a tightly-packed configuration with periods between 10 and 47 days. We perform a dynamical analysis of the system based upon transit timing variations observed in more than three years of \ik photometric data. Stellar parameters are derived using a combination of spectral classification and constraints on the star's density derived from transit profiles together with planetary eccentricity vectors provided by our dynamical study. Combining masses of the planets relative to the star from our dynamical study and radii of the planets relative to the star from transit depths together with deduced stellar properties yields measurements of the radii of all six planets, masses of the five inner planets, and an upper bound to the mass of the outermost planet, whose orbital period is 118 days. We find mass-radius combinations for all six planets that imply that substantial fractions of their volumes are occupied by constituents that are less dense than rock. The Kepler-11 system contains the lowest mass exoplanets for which both mass and radius have been measured.Comment: 39 pages, 10 figure

    Secure mass measurements from transit timing: 10 Kepler exoplanets between 3 and 8 M_āŠ• with diverse densities and incident fluxes

    Get PDF
    We infer dynamical masses in eight multiplanet systems using transit times measured from Kepler's complete data set, including short-cadence data where available. Of the 18 dynamical masses that we infer, 10 pass multiple tests for robustness. These are in systems Kepler-26 (KOI-250), Kepler-29 (KOI-738), Kepler-60 (KOI-2086), Kepler-105 (KOI-115), and Kepler-307 (KOI-1576). Kepler-105 c has a radius of 1.3 R_āŠ• and a density consistent with an Earth-like composition. Strong transit timing variation (TTV) signals were detected from additional planets, but their inferred masses were sensitive to outliers or consistent solutions could not be found with independently measured transit times, including planets orbiting Kepler-49 (KOI-248), Kepler-57 (KOI-1270), Kepler-105 (KOI-115), and Kepler-177 (KOI-523). Nonetheless, strong upper limits on the mass of Kepler-177 c imply an extremely low density of ~0.1 g cm^(āˆ’3). In most cases, individual orbital eccentricities were poorly constrained owing to degeneracies in TTV inversion. For five planet pairs in our sample, strong secular interactions imply a moderate to high likelihood of apsidal alignment over a wide range of possible eccentricities. We also find solutions for the three planets known to orbit Kepler-60 in a Laplace-like resonance chain. However, nonlibrating solutions also match the transit timing data. For six systems, we calculate more precise stellar parameters than previously known, enabling useful constraints on planetary densities where we have secure mass measurements. Placing these exoplanets on the massā€“radius diagram, we find that a wide range of densities is observed among sub-Neptune-mass planets and that the range in observed densities is anticorrelated with incident flux

    Validation of Kepler's Multiple Planet Candidates. III: Light Curve Analysis & Announcement of Hundreds of New Multi-planet Systems

    Get PDF
    The Kepler mission has discovered over 2500 exoplanet candidates in the first two years of spacecraft data, with approximately 40% of them in candidate multi-planet systems. The high rate of multiplicity combined with the low rate of identified false-positives indicates that the multiplanet systems contain very few false-positive signals due to other systems not gravitationally bound to the target star (Lissauer, J. J., et al., 2012, ApJ 750, 131). False positives in the multi- planet systems are identified and removed, leaving behind a residual population of candidate multi-planet transiting systems expected to have a false-positive rate less than 1%. We present a sample of 340 planetary systems that contain 851 planets that are validated to substantially better than the 99% confidence level; the vast majority of these have not been previously verified as planets. We expect ~2 unidentified false-positives making our sample of planet very reliable. We present fundamental planetary properties of our sample based on a comprehensive analysis of Kepler light curves and ground-based spectroscopy and high-resolution imaging. Since we do not require spectroscopy or high-resolution imaging for validation, some of our derived parameters for a planetary system may be systematically incorrect due to dilution from light due to additional stars in the photometric aperture. None the less, our result nearly doubles the number of verified exoplanets.Comment: 138 pages, 8 Figures, 5 Tables. Accepted for publications in the Astrophysical Journa

    Discovery of a Third Transiting Planet in the Kepler-47 Circumbinary System

    Get PDF
    Of the nine confirmed transiting circumbinary planet systems, only Kepler-47 is known to contain more than one planet. Kepler-47 b (the "inner planet") has an orbital period of 49.5 days and a radius of about 3 RāŠ•. Kepler-47 c (the "outer planet") has an orbital period of 303.2 days and a radius of about 4.7 RāŠ•. Here we report the discovery of a third planet, Kepler-47 d (the "middle planet"), which has an orbital period of 187.4 days and a radius of about 7 RāŠ•. The presence of the middle planet allows us to place much better constraints on the masses of all three planets, where the 1Ļƒranges are less than 26 MāŠ•, between 7ā€“43 MāŠ•, and between 2ā€“5 MāŠ• for the inner, middle, and outer planets, respectively. The middle and outer planets have low bulk densities, with Ļ_(middle) < 0.68 g cm^(āˆ’3) and Ļ_(outer) < 0.26 g cm^(āˆ’3) at the 1Ļƒ level. The two outer planets are "tightly packed," assuming the nominal masses, meaning no other planet could stably orbit between them. All of the orbits have low eccentricities and are nearly coplanar, disfavoring violent scattering scenarios and suggesting gentle migration in the protoplanetary disk

    Direct Silicon Heterostructures With Methylammonium Lead Iodide Perovskite for Photovoltaic Applications

    Get PDF
    We investigated the formation of photovoltaic (PV) devices using direct n-Si/MAPI (methylammonium lead tri-iodide) two-sided heterojunctions for the first time (as a possible alternative to two-terminal tandem devices) in which charge might be generated and collected from both the Si and MAPI. Test structures were used to establish that the n-Si/MAPI junction was photoactive and that spiro-OMeTAD acted as a ā€œpinhole blockingā€ layer in n-Si/MAPI devices. Two-terminal ā€œsubstrateā€ geometry devices comprising Al/n-Si/MAPI/spiro-OMeTAD/Au were fabricated and the effects of changing the thickness of the semitransparent gold electrode and the silicon resistivity were investigated. External quantum efficiency and capacitanceā€“voltage measurements determined that the junction was one-sided in the siliconā€”and that the majority of the photocurrent was generated in the silicon, with there being a sharp cutoff in photoresponse above the MAPI bandgap. Construction of band diagrams indicated the presence of an upward valence band spike of up to 0.5 eV at the n-Si/MAPI interface that could impede carrier flow. Evidence for hole accumulation at this feature was seen in both Kelvin-probe transients and from unusual features in both currentā€“voltage and capacitanceā€“voltage measurements. The devices achieved a hysteresis-free best power conversion efficiency of 2.08%, V OC 0.46 V, J SC 11.77 mA/cm2, and FF 38.4%, demonstrating for the first time that it is possible to create a heterojunction PV device directly between the MAPI and n-Si. Further prospects for two-sided n-Si/MAPI heterojunctions are also discussed

    Natural Band Alignments and Band Offsets of Sb2Se3 Solar Cells

    Get PDF
    Sb2Se3 is a promising material for use in photovoltaics, but the optimum device structure has not yet been identified. This study provides band alignment measurements between Sb2Se3, identical to that used in high-efficiency photovoltaic devices, and its two most commonly used window layers, namely, CdS and TiO2. Band alignments are measured via two different approaches: Andersonā€™s rule was used to predict an interface band alignment from measured natural band alignments, and the Kraut method was used in conjunction with hard X-ray photoemission spectroscopy to directly measure the band offsets at the interface. This allows examination of the effect of interface formation on the band alignments. The conduction band minimum (CBM) of TiO2 is found by the Kraut method to lie 0.82 eV below that of Sb2Se3, whereas the CdS CBM is only 0.01 eV below that of Sb2Se3. Furthermore, a significant difference is observed between the natural alignment- and Kraut method-determined offsets for TiO2/Sb2Se3, whereas there is little difference for CdS/Sb2Se3. Finally, these results are related to device performance, taking into consideration how these results may guide the future development of Sb2Se3 solar cells and providing a methodology that can be used to assess band alignments in device-relevant systems
    • ā€¦
    corecore