4,835 research outputs found

    MDL Convergence Speed for Bernoulli Sequences

    Get PDF
    The Minimum Description Length principle for online sequence estimation/prediction in a proper learning setup is studied. If the underlying model class is discrete, then the total expected square loss is a particularly interesting performance measure: (a) this quantity is finitely bounded, implying convergence with probability one, and (b) it additionally specifies the convergence speed. For MDL, in general one can only have loss bounds which are finite but exponentially larger than those for Bayes mixtures. We show that this is even the case if the model class contains only Bernoulli distributions. We derive a new upper bound on the prediction error for countable Bernoulli classes. This implies a small bound (comparable to the one for Bayes mixtures) for certain important model classes. We discuss the application to Machine Learning tasks such as classification and hypothesis testing, and generalization to countable classes of i.i.d. models.Comment: 28 page

    Electron-phonon interaction in the solid form of the smallest fullerene C20_{20}

    Full text link
    The electron-phonon coupling of a theoretically devised carbon phase made by assembling the smallest fullerenes C20_{20} is calculated from first principles. The structure consists of C20_{20} cages in an {\it fcc} lattice interlinked by two bridging carbon atoms in the interstitial tetrahedral sites ({\it fcc}-C22_{22}). The crystal is insulating but can be made metallic by doping with interstitial alkali atoms. In the compound NaC22_{22} the calculated coupling constant λ/N(0)\lambda/N(0) is 0.28 eV, a value much larger than in C60_{60}, as expected from the larger curvature of C20_{20}. On the basis of the McMillan's formula, the calculated λ\lambda=1.12 and a Ό∗\mu^* assumed in the range 0.3-0.1 a superconducting Tc_c in the range 15-55 K is predicted.Comment: 7 page

    Stability of longitudinal coupling for Josephson charge qubits

    Full text link
    For inductively coupled superconducting quantum bits, we determine the conditions when the coupling commutes with the single-qubit terms. We show that in certain parameter regimes such longitudinal coupling can be stabilized with respect to variations of the circuit parameters. In addition, we analyze its stability against fluctuations of the control fields.Comment: 5 pages, 2 figures; additional discussion and reference

    OpenML Benchmarking Suites

    Full text link
    Machine learning research depends on objectively interpretable, comparable, and reproducible algorithm benchmarks. Therefore, we advocate the use of curated, comprehensive suites of machine learning tasks to standardize the setup, execution, and reporting of benchmarks. We enable this through software tools that help to create and leverage these benchmarking suites. These are seamlessly integrated into the OpenML platform, and accessible through interfaces in Python, Java, and R. OpenML benchmarking suites are (a) easy to use through standardized data formats, APIs, and client libraries; (b) machine-readable, with extensive meta-information on the included datasets; and (c) allow benchmarks to be shared and reused in future studies. We also present a first, carefully curated and practical benchmarking suite for classification: the OpenML Curated Classification benchmarking suite 2018 (OpenML-CC18)

    Stability of longitudinal coupling for Josephson charge qubits

    Get PDF
    • 

    corecore