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Stability of longitudinal coupling for Josephson charge qubits
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For inductively coupled superconducting quantum bits, we determine the conditions when the
coupling commutes with the single-qubit terms. We show that in certain parameter regimes such
longitudinal coupling can be stabilized with respect to variations of the circuit parameters. In
addition, we analyze its stability against fluctuations of the control fields.
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Among potential realizations of scalable quantum com-
puters1, superconducting qubits belong to the promising
candidates2,3,4. Experimentally, coupling between quan-
tum bits has been demonstrated5,6,7,8,9, as well as cou-
pling of a qubit to an oscillator10,11. So far most experi-
ments have been performed with fixed coupling, but for
flexible and precise coherent control of a larger number of
qubits, a tunable coupling is preferable. First demonstra-
tions of such tunable coupling have been provided only
recently12,13.

Although it is not necessary, for convenience and pre-
cision of the operations, one wishes to be able to switch
single-qubit and coupling terms on and off indepen-
dently. On the other hand, in many physical realiza-
tions of qubits, coupling terms and single-qubit terms
are switched by the same control parameters. Especially
in designs which couple qubits via an LC-oscillator14,15,
the coupling terms are present only when simultane-
ously single-qubit terms are turned on. If this cannot
be avoided, one should at least make efforts to ensure
that the coupling and single-qubit terms commute with
each other, a situation which we denote as “longitudinal”
coupling. In this case, the time-evolution operator fac-
torizes into parts due to the coupling and due to single-
qubit terms. If the coupling can be switched off, one can
easily undo unwanted single-qubit operations and thus
produce a “pure” two-qubit gate. Moreover, if one can
control the longitudinal-coupling strength, the resulting
operation is sensitive only to the time integral and not to
the detailed profile of the control pulse, a property which
makes operation easier and more stable.

Here, we investigate tunable longitudinal-coupling
schemes for Josephson charge qubits. At the charge
degeneracy point, where dephasing is weakest, capaci-
tive (charge-charge) coupling is always “transverse” (i.e.
σz · σz coupling, while the single qubit term is pro-
portional to σx). Also the tunable inductive (current-
current) coupling scheme proposed in Refs. 2,14, where
the qubits are coupled to a common inductor, is purely
transverse. However, this scheme can be modified in such
a way that the coupling at the symmetry point becomes
purely longitudinal15,16,17.

The longitudinal-coupling designs proposed in Refs. 15,

16,17 assume identical junctions within each qubit. As
we will show below, variations of the junction parame-
ters (especially critical currents and capacitances), which
are unavoidable due to fabrication errors, add transverse
terms to the coupling, which can not be tuned to zero.
This problem has also been noted in Ref. 18. Here, we
propose and analyze a design with longitudinal inductive
coupling, which is stable against such imperfections, in
the sense that by tuning control parameters, we can reach
a point with purely longitudinal coupling.

The simplest method to compensate for variations
in the critical currents of the junctions in the circuit
is to replace them by dc-SQUIDs or more complicated
circuits, which allow tuning of the effective Josephson
couplings via applied, individually controlled magnetic
fluxes. However, in order to reach effectively identical
junctions, one also needs tunable capacitances, for which
there is no simple and efficient solution. Nevertheless, we
found a design where, in spite of the spread in fabrication
parameters, it is possible to achieve longitudinal coupling
merely by tuning fluxes to specific values. For designs
with two junctions per qubit (those of Refs. 15,16,17
can be viewed as such), this is possible even when the
Josephson energies of these junctions are different, pro-
vided that, in addition, the capacitances are different. In
other words, the system should deliberately be fabricated
asymmetric.

Further, we analyze the stability with respect to time-
dependent fluctuations of the magnetic fluxes. Within
the region of parameters, where tuning to purely longitu-
dinal coupling is possible, the instability against fluctua-
tions of fluxes increases with increasing asymmetry of the
capacitances. Thus, on one hand, the system should be
fabricated asymmetric in order to allow tuning to longi-
tudinal coupling; on the other hand, in order to minimize
the instability with respect to fluctuations in the applied
fluxes, one should keep the values of the capacitances as
close to each other as the first requirement permits.

The system. As a specific example, we consider in-
ductively coupled charge qubits as shown in Fig. 1. For
particular values of the Josephson energies Ej

a and ca-
pacitances Cj

a , it reduces to the design of Refs. 2,14 with
transverse coupling or to that of Ref. 15 with longitudi-
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nal coupling. The coupling can be controlled by fluxes
applied in the loops. We use an upper index to enumer-
ate qubits and a lower index a/b to distinguish junctions
above and below the island of each qubit.
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FIG. 1: Charge qubits coupled to an LC-circuit. Earlier pro-
posals with either longitudinal15 or transverse2,14 coupling
can be considered as particular cases of this design. The fluxes
shown here are applied in the loops between the qubits, such
that the total flux bias between the inductance and a qubit
j is given as Φj

x =
Pj

k=1
Φ̃k

x . The junctions may be replaced
by SQUID loops to achieve tunable Josephson energies.

If N qubits are coupled to the inductor L, there are
N + 1 independent phase variables in the system. As
one of them, we choose the phase drop φL = 2πΦL/Φ0,
related to the flux ΦL through the inductor. Further-
more, for each qubit j, we introduce the phase φj across
the junction above the qubit island. The system is then
described by the Hamiltonian

H =

N
∑

j=1

(

2enj − qj
)2

2Cj
Σ

+
1

2Cs
[Q +

N
∑

j=1

kj
a(2enj − qj)]2

+
Φ2

L

2L
−

N
∑

j=1

Ej
a cosφj −

N
∑

j=1

Ej
b cos

(

φj − φL − φj
x

)

. (1)

Here nj is the number of excess Cooper-pair charges on
the island of qubit j, canonically conjugate to φj . The
conjugate variable to ΦL is the charge Q on the capaci-
tors of the lower junctions of all qubits. The gate charges
of the qubit are defined as qj = Cj

gV j
g , where V j

g is the

gate voltage and Cj
g is the corresponding capacitance.

For simplicity, we consider constant applied fluxes. The
total qubit charge, screened by capacitances with ratios
kj
a ≡ Cj

b/Cj
Σ, acts as gate charge of the oscillator. The to-

tal capacitance of each island is Cj
Σ = Cj

a +Cj
b +Cj

g . The
Josephson coupling terms of the Hamiltonian contain the
total phase bias between each qubit and the inductor,

φj
x =

∑j
k=1

2π
Φ0

Φ̃j
x. We further introduced the total ca-

pacitance of the LC-circuit, Cs =
∑N

j=1(C
j
a +Cj

g)C
j
b/Cj

Σ.
We consider an oscillator with frequency much higher

than all qubit frequencies, ~/
√

LCs ≫ Ej
C , Ej

a , Ej
b, and

further assume
√

L/Cs ≪ ~/e2. This ensures that both
the average value and the fluctuations of the oscillator
flux ΦL are much smaller than Φ0, and the oscillator can
be adiabatically eliminated, cf. Ref. 2. Below, we further

discuss the condition of adiabaticity. In the process we
transform the qubit phase as φj → φ̃j = φj − kj

aφL. We

further consider the charge regime Ej
C = e2/(2Cj

Σ) ≫
Ej

a , E
j
b. If for each qubit the gate voltage is chosen

close to a charge degeneracy point, we can employ a
two-state approximation with relevant charge states de-
noted as |n = 1〉 and |n = 0〉. After a transformation

φ̃j → θj = φ̃j −φj
x/2 and the gauge choice cos θj → σj

x/2
and sin θj → σj

y/2, we find the effective Hamiltonian

Heff =

N
∑

j=1

Hj
single −

L

2





N
∑

j=1

Ij





2

. (2)

The single-qubit Hamiltonian of qubit j and its contri-
bution to the current through the inductor are given by

Hj
single = −1

2

(

Bj
xσj

x + Bj
yσj

y + Bj
zσ

j
z

)

,

Ij =
1

2

(

Ij
xσj

x + Ij
yσj

y

)

, (3)

where

Bx = (Ea + Eb) cos(φx/2) ,

By = (−Ea + Eb) sin(φx/2) ,

Bz = 4EC(q/e − 1) . (4)

In Eqs. (4) (and below, where it does not lead to con-
fusion) we omit the qubit index j. The current of each
qubit is

Ix = [ka · Ia + (1 − ka) · Ib] sin(φx/2)

Iy = [ka · Ia + (ka − 1) · Ib] cos(φx/2) , (5)

where the critical currents of the junctions above and
below the island of a qubit are denoted by Ia/b =
2πEa/b/Φ0.

The design of Ref. 15 with longitudinal coupling is
recovered for symmetric Josephson energies and capac-
itances (Ea = Eb and ka = 1/2). On the other hand, the
coupling is always transverse19 for Ea = 0 or Eb = 0.

Conditions for longitudinal coupling. We will deter-
mine now under which conditions the coupling is longi-
tudinal, that is, the single-qubit terms commute with the
coupling term,

[ Hj
single , L

∑

k,l
IkI l ] = 0 for all j . (6)

First, we assume operation at the charge degeneracy
point, Bj

z = 0, of each qubit j. Here decoherence
is slowest, and only the tunneling energy part, U j =
−(1/2)Bj

xσj
x − (1/2)Bj

yσ
j
y, of the single-qubit energy re-

mains. Since the current operators of different qubits
commute, the condition (6) is satisfied if and only if
[Ij , U j] = 0 for each qubit j, and it is sufficient to con-
sider each qubit separately. This commutator vanishes
when the following condition is fulfilled for each qubit

kaE
2
a + (ka − 1)E2

b + (2ka − 1)EaEb cosφx = 0 . (7)
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As expected, this condition of longitudinal coupling is
2π-periodic in the applied phases. Apart from trivial
cases, where either single-qubit and coupling terms van-
ish (Ea = Eb = 0), or where the connection on one side
of the island is broken (Ea = 0 and ka = 1 or Eb = 0
and ka = 0), this condition can only be fulfilled in the
following two cases: (i) Ea = Eb and ka = 1/2, or (ii)

cosφx =
κ − ǫ2

(1 − κ)ǫ
. (8)

Here we introduced the ratios of Josephson couplings and
of capacitances above and below the junction,

ǫ ≡ Ea

Eb

, κ ≡ 1 − ka

ka

=
Ca + Cg

Cb

. (9)

Note that case (i) corresponds to the symmetric sit-
uation: equal Josephson couplings and capacitances on
both sides of the island (ǫ = κ = 1). While the former
may be adjusted by replacing junctions by SQUID loops,
the spread in the values of the capacitances can not be
avoided in real experiments.

Tuning to longitudinal coupling. We will now show
that for case (ii) for a wide range of design parameters –
in spite of some spread – one can tune to longitudinal cou-
pling by proper choice of the applied flux for each qubit.
Especially, condition (8) can be satisfied even when ca-
pacitances and Josephson energies of the fabricated setup
deviate from their nominal values. Via the applied fluxes
in the design of Fig. 1, the phases φx can be tuned in the
full range between 0 and 2π, and the condition (8) can
be satisfied, when

1) κ ≤ ǫ ≤ 1 or 2) 1 ≤ ǫ ≤ κ . (10)

This parameter range, where it is possible to tune to lon-
gitudinal coupling, is shown in Fig. 2 as region I (green).
On the other hand, in region II of this diagram, purely
longitudinal coupling can not be achieved.

1 2
0

1

2

0
ε

κ

I

II I

II

FIG. 2: (Color online) Stability diagram for a Josephson
charge qubit. In region I tuning to longitudinal coupling by
applied magnetic fluxes is possible. In region II the coupling
always has a transverse component.

Only for the symmetric case, κ = ǫ = 1, which corre-
sponds to a single point in the diagram shown in Fig. 2,
the coupling is longitudinal for an arbitrary value of the
parameter φx. For this reason, the symmetric design ap-
pears most appealing. However, it is unstable in the sense
that small deviations of the parameters ǫ or κ from the
nominal value of 1 may bring the system into region II,
where longitudinal coupling cannot be achieved. There-
fore, in order to be able to tune to stable longitudinal
coupling, one should aim for design parameters inside
region I of the phase diagram. Since the commutation
relation should be satisfied for all qubits, one needs to
build each qubit with parameters in the proper range.
Further, one needs to have for each qubit an individ-
ual control parameter φx (as opposed to a common flux
through the inductor used in Ref. 15).

Stability of longitudinal coupling with respect to fluctu-

ations in the control fluxes. Time-dependent fluctuations
or drifts in the applied fluxes will shift the operation point
from the desired values given by Eq. (8). We want to es-
timate for which values of the design parameters these
deviations lead to the weakest instability of the longi-
tudinal coupling. For this purpose we introduce a mea-
sure for the residual transverse-coupling strength. If one
regards the single qubit terms at the degeneracy point
and the current of each qubit as vectors, (Bx, By) and
(Ix, Iy), in the x-y plane, the commutation between both
corresponds to parallel vectors. On the other hand, the
z-component of their cross product, BxIy −ByIx, which
is also proportional to the lhs. of Eq. (7), is a measure for
the contribution of one qubit to the transverse coupling.
To gain independence of the total coupling strength, we
consider the ratio of transverse and longitudinal coupling
strengths,

t =
BxIy − ByIx

BxIx + ByIy
. (11)

The numerator and denominator vanish for purely longi-
tudinal or transverse coupling, respectively. Larger val-
ues of |t| correspond to stronger transverse coupling. We
find

t =
kaE

2
a + (ka − 1)E2

b + (2ka − 1)EaEb cosφx

EaEb sinφx

. (12)

When φx = φx0 + δφx deviates from the value φx0 satis-
fying the condition (8), the variation of the relative cou-
pling strength in the linear order is governed by

∂t

∂(δφx)

∣

∣

∣

∣

δφx=0

= 1 − 2ka =
κ − 1

κ + 1
. (13)

Note that this expression holds in region I of the stabil-
ity diagram for the special values of the flux bias (8), at
which t vanishes. Thus, on one hand, to tune to longi-
tudinal coupling one has to aim inside region I, not too
close to its boundary; on the other hand, in order to min-
imize the sensitivity to fluctuations (13), one should keep
the value of κ close to 1.
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Slow and fast oscillators. So far we considered a fast
oscillator, ~ωLC = ~/

√
LCs ≫ Eqb ∼ Ej

C , Ej
a , E

j
b, which

could be adiabatically eliminated. Let us briefly discuss
the opposite case of a slow oscillator (cf. Ref. 20; note
that ωLC decreases with the number N of qubits). For
this purpose, it is convenient to split the operators Ij

into longitudinal and transverse parts, Ij = Ij
long +Ij

trans.

Since Ij
long is a slow variable (as long as the single-qubit

Hamiltonian is kept fixed), the longitudinal coupling

term is of the same form as above, −L
2

(

∑N
j=1 Ij

long

)2

.

Notably, the transverse coupling is suppressed: Itrans

varies at frequencies ∼ Eqb ≫ ωLC , at which the re-
sponse of the oscillator is weak, and this results in
a transverse inductive coupling suppressed by a factor
(ωLC/Eqb)2 relative to the longitudinal coupling. Thus,
in case of a slow oscillator the longitudinal coupling is
even more stable. This description of the coupling applies
on time scales longer than ω−1

LC . This constraint does not
allow a decrease in ωLC indefinitely and, in particular,
limits the scalability, i.e., the number N of qubits.

Comments. (i) Besides working in the parameter
regime given in Eq. (10), one should keep the gate ca-
pacitances Cg small, in order to decouple the qubits from
the electromagnetic environment. These can be conflict-
ing requirements, since the ratio of Josephson energies
Ea/Eb is usually close to that of the capacitances Ca/Cb

in a fabricated sample. This problem can be lifted by
employing an additional capacitance in parallel to either
of the qubit junctions.

(ii) We assumed individually controllable fluxes in
qubit loops. In experiment, fluxes are controlled via mul-
tiple current lines. However, cross couplings may appear,
which can be overcome9.

(iii) For the design as discussed so far, there is only
one control flux for each qubit which is used to tune
to the point of longitudinal coupling. Since one would
like to control the coupling strength independently, ad-
ditional control parameters are desirable. One possibility
is to replace simple junctions by SQUID loops with ad-
ditional control fluxes. These can be used to change the
effective Josephson energies and therefore the coupling
strength. Furthermore, when one keeps the ratio of ef-
fective Josephson energies constant, one can stay at the
point of longitudinal coupling, while changing the longi-
tudinal coupling strength. We emphasize the difference
to the proposal of Ref. 15, where only one common flux

in “outer loops” is applied, and longitudinal coupling can
not be achieved in this way for asymmetric design param-
eters.

(iv) Alternatively, tunable coupling strength may be
achieved by a standard replacement of the inductor with
a Josephson junction in the phase regime, see, e.g., Ref. 2.
The tunability can be achieved by current-biasing this
junction17. This has an additional advantage since in an
experiment currents can be switched faster than fluxes.
In order to produce longitudinal coupling in such a situ-
ation, the condition of Eq. (8) needs to be slightly mod-
ified; one has to add the additional phase applied by the
control current to φx for each qubit.

(v) Searching for longitudinal coupling which is stable
against weak flux fluctuations, one may consider more
involved designs, in particular, with Josephson junctions
replaced by dc-SQUID loops or even more junctions in
parallel. This would provide more tuning parameters
(magnetic fluxes in the loops) and potentially the pos-
sibility to find a better operation point. However, such a
point should be stable against fluctuations in all control
fluxes. Moreover, the additional fluxes will also fluctu-
ate and increase the noise level. One can show that it is
impossible to stabilize the longitudinal coupling in this
manner21.

In summary, we analyzed, for a system of inductively
coupled charge qubits, the conditions for longitudinal
inter-qubit coupling, i.e., a coupling that commutes with
single-qubit terms. Earlier suggestions relied on precise
symmetries of parameters of various junctions. We stud-
ied the stability of the longitudinal coupling with respect
to deviations from this nominal symmetry, which is un-
avoidable during fabrication. We have shown that in
a simple design one can reach longitudinal coupling by
keeping the nominal parameters in a certain range, away
from the symmetry point. For such a circuit, one can al-
ways compensate for deviations of the parameters of the
fabricated circuit by tuning control fluxes. Fluctuations
of magnetic fluxes render the longitudinal character un-
stable for any circuit of the considered type. We found
the conditions when this instability is weak.

This work is part of the EU IST project Eu-
roSQIP, and was also supported by the RSSF (YM)
and by Graduiertenkolleg ”Kollektive Phänomene im
Festkörper” (CH). We acknowledge valuable discussions
with M. Wallquist.
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