352 research outputs found

    Non-immune fetal hydrops: etiology and outcome according to gestational age at diagnosis.

    Get PDF
    OBJECTIVE: Fetal hydrops is associated with increased perinatal morbidity and mortality. The etiology and outcome of fetal hydrops may differ according to the gestational age at diagnosis. The aim of this study was to evaluate the cause, evolution and outcome of non-immune fetal hydrops (NIFH), according to the gestational age at diagnosis. METHODS: This was a retrospective cohort study of all singleton pregnancies complicated by NIFH, at the Fetal Medicine Unit at St George's University Hospital, London, UK, between 2000 and 2018. All fetuses had detailed anomaly and cardiac ultrasound scans, karyotyping and infection screening. Prenatal diagnostic and therapeutic intervention, gestational age at diagnosis and delivery, as well as pregnancy outcome, were recorded. Regression analysis was used to test for potential association between possible risk factors and perinatal mortality. RESULTS: We included 273 fetuses with NIFH. The etiology of the condition varied significantly in the three trimesters. Excluding 30 women who declined invasive testing, the cause of NIFH was defined as unknown in 62 of the remaining 243 cases (25.5%). Chromosomal aneuploidy was the most common cause of NIFH in the first trimester. It continued to be a significant etiologic factor in the second trimester, along with congenital infection. In the third trimester, the most common etiology was cardiovascular abnormality. Among the 152 (55.7%) women continuing the pregnancy, 48 (31.6%) underwent fetal intervention, including the insertion of pleuroamniotic shunts, fetal blood transfusion and thoracentesis. Fetal intervention was associated significantly with lower perinatal mortality (odds ratio (OR), 0.30 (95% CI, 0.14-0.61); P  0.05). CONCLUSIONS: An earlier gestational age at diagnosis of NIFH was associated with an increased risk of aneuploidy and worse pregnancy outcome, including a higher risk of perinatal loss. Fetal therapy was associated significantly with lower perinatal mortality. © 2020 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of the International Society of Ultrasound in Obstetrics and Gynecology

    Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior

    Get PDF
    Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.Fil: Hutchison, M. A.. National Institutes of Health; Estados UnidosFil: Gu, X.. National Institutes of Health; Estados UnidosFil: Adrover, Martín Federico. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Lee, M. R.. National Institutes of Health; Estados UnidosFil: Hnasko, T. S.. University of California at San Diego; Estados UnidosFil: Alvarez, V. A.. National Institutes of Health; Estados UnidosFil: Lu, W.. National Institutes of Health; Estados Unido

    Alkaline-Silicate REE-HFSE Systems

    Get PDF
    This is the final version. Available on open access from the Society of Economic Geologists via the DOI in this recordDevelopment of renewable energy infrastructure requires critical raw materials, such as the rare earth elements (REEs, including scandium) and niobium, and is driving expansion and diversification in their supply chains. Although alternative sources are being explored, the majority of the world’s resources of these elements are found in alkaline-silicate rocks and carbonatites. These magmatic systems also represent major sources of fluorine and phosphorus. Exploration models for critical raw materials are comparatively less well developed than those for major and precious metals, such as iron, copper, and gold, where most of the mineral exploration industry continues to focus. The diversity of lithologic relationships and a complex nomenclature for many alkaline rock types represent further barriers to the exploration and exploitation of REE-high field strength element (HFSE) resources that will facilitate the green revolution. We used a global review of maps, cross sections, and geophysical, geochemical, and petrological observations from alkaline systems to inform our description of the alkaline-silicate REE + HFSE mineral system from continental scale (1,000s km) down to deposit scale (~1 km lateral). Continental-scale targeting criteria include a geodynamic trigger for low-degree mantle melting at high pressure and a mantle source enriched in REEs, volatile elements, and alkalies. At the province and district scales, targeting criteria relate to magmatic-system longevity and the conditions required for extensive fractional crystallization and the residual enrichment of the REEs and HFSEs. A compilation of maps and geophysical data were used to construct an interactive 3-D geologic model (25-km cube) that places mineralization within a depth and horizontal reference frame. It shows typical lithologic relationships surrounding orthomagmatic REE-Nb-Ta-Zr-Hf mineralization in layered agpaitic syenites, roof zone REE-Nb-Ta mineralization, and mineralization of REE-Nb-Zr associated with peralkaline granites and pegmatites. The resulting geologic model is presented together with recommended geophysical and geochemical approaches for exploration targeting, as well as mineral processing and environmental factors pertinent for the development of mineral resources hosted by alkaline-silicate magmatic systems.European Union Horizon 202

    Neutrophil swarming and extracellular trap formation play a significant role in Alum adjuvant activity

    Get PDF
    There are over 6 billion vaccine doses administered each year, most containing aluminium-based adjuvants, yet we still do not have a complete understanding of their mechanisms of action. Recent evidence has identified host DNA and downstream sensing as playing a significant role in aluminium adjuvant (aluminium hydroxide) activity. However, the cellular source of this DNA, how it is sensed by the immune system and the consequences of this for vaccination remains unclear. Here we show that the very early injection site reaction is characterised by inflammatory chemokine production and neutrophil recruitment. Intravital imaging demonstrates that the Alum injection site is a focus of neutrophil swarms and extracellular DNA strands. These strands were confirmed as neutrophil extracellular traps due to their sensitivity to DNAse and absence in mice deficient in peptidylarginine deiminase 4. Further studies in PAD4−/− mice confirmed a significant role for neutrophil extracellular trap formation in the adjuvant activity of Alum. By revealing neutrophils recruited to the site of Alum injection as a source of the DNA that is detected by the immune system this study provides the missing link between Alum injection and the activation of DNA sensors that enhance adjuvant activity, elucidating a key mechanism of action for this important vaccine component

    Clinical practice: Noninvasive respiratory support in newborns

    Get PDF
    The most important goal of introducing noninvasive ventilation (NIV) has been to decrease the need for intubation and, therefore, mechanical ventilation in newborns. As a result, this technique may reduce the incidence of bronchopulmonary dysplasia (BPD). In addition to nasal CPAP, improvements in sensors and flow delivery systems have resulted in the introduction of a variety of other types of NIV. For the optimal application of these novelties, a thorough physiological knowledge of mechanics of the respiratory system is necessary. In this overview, the modern insights of noninvasive respiratory therapy in newborns are discussed. These aspects include respiratory support in the delivery room; conventional and modern nCPAP; humidified, heated, and high-flow nasal cannula ventilation; and nasal intermittent positive pressure ventilation. Finally, an algorithm is presented describing common practice in taking care of respiratory distress in prematurely born infants

    Symptomatic asymmetry in the first six months of life: differential diagnosis

    Get PDF
    Asymmetry in infancy is a clinical condition with a wide variation in appearances (shape, posture, and movement), etiology, localization, and severity. The prevalence of an asymmetric positional preference is 12% of all newborns during the first six months of life. The asymmetry is either idiopathic or symptomatic. Pediatricians and physiotherapists have to distinguish symptomatic asymmetry (SA) from idiopathic asymmetry (IA) when examining young infants with a positional preference to determine the prognosis and the intervention strategy. The majority of cases will be idiopathic, but the initial presentation of a positional preference might be a symptom of a more serious underlying disorder. The purpose of this review is to synthesize the current information on the incidence of SA, as well as the possible causes and the accompanying signs that differentiate SA from IA. This review presents an overview of the nine most prevalent disorders in infants in their first six months of life leading to SA. We have discovered that the literature does not provide a comprehensive analysis of the incidence, characteristics, signs, and symptoms of SA. Knowledge of the presented clues is important in the clinical decision making with regard to young infants with asymmetry. We recommend to design a valid and useful screening instrument

    Dual Infection and Superinfection Inhibition of Epithelial Skin Cells by Two Alphaherpesviruses Co-Occur in the Natural Host

    Get PDF
    Hosts can be infected with multiple herpesviruses, known as superinfection; however, superinfection of cells is rare due to the phenomenon known as superinfection inhibition. It is believed that dual infection of cells occurs in nature, based on studies examining genetic exchange between homologous alphaherpesviruses in the host, but to date, this has not been directly shown in a natural model. In this report, gallid herpesvirus 2 (GaHV-2), better known as Marek’s disease virus (MDV), was used in its natural host, the chicken, to determine whether two homologous alphaherpesviruses can infect the same cells in vivo. MDV shares close similarities with the human alphaherpesvirus, varicella zoster virus (VZV), with respect to replication in the skin and exit from the host. Recombinant MDVs were generated that express either the enhanced GFP (eGFP) or monomeric RFP (mRFP) fused to the UL47 (VP13/14) herpesvirus tegument protein. These viruses exhibited no alteration in pathogenic potential and expressed abundant UL47-eGFP or -mRFP in feather follicle epithelial cells in vivo. Using laser scanning confocal microscopy, it was evident that these two similar, but distinguishable, viruses were able to replicate within the same cells of their natural host. Evidence of superinfection inhibition was also observed. These results have important implications for two reasons. First, these results show that during natural infection, both dual infection of cells and superinfection inhibition can co-occur at the cellular level. Secondly, vaccination against MDV with homologous alphaherpesvirus like attenuated GaHV-2, or non-oncogenic GaHV-3 or meleagrid herpesvirus (MeHV-1) has driven the virus to greater virulence and these results implicate the potential for genetic exchange between homologous avian alphaherpesviruses that could drive increased virulence. Because the live attenuated varicella vaccine is currently being administered to children, who in turn could be superinfected by wild-type VZV, this could potentiate recombination events of VZV as well

    Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    Get PDF
    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly

    Augmentation of arginase 1 expression by exposure to air pollution exacerbates the airways hyperresponsiveness in murine models of asthma

    Get PDF
    Abstract Background Arginase overexpression contributes to airways hyperresponsiveness (AHR) in asthma. Arginase expression is further augmented in cigarette smoking asthmatics, suggesting that it may be upregulated by environmental pollution. Thus, we hypothesize that arginase contributes to the exacerbation of respiratory symptoms following exposure to air pollution, and that pharmacologic inhibition of arginase would abrogate the pollution-induced AHR. Methods To investigate the role of arginase in the air pollution-induced exacerbation of airways responsiveness, we employed two murine models of allergic airways inflammation. Mice were sensitized to ovalbumin (OVA) and challenged with nebulized PBS (OVA/PBS) or OVA (OVA/OVA) for three consecutive days (sub-acute model) or 12 weeks (chronic model), which exhibit inflammatory cell influx and remodeling/AHR, respectively. Twenty-four hours after the final challenge, mice were exposed to concentrated ambient fine particles plus ozone (CAP+O3), or HEPA-filtered air (FA), for 4 hours. After the CAP+O3 exposures, mice underwent tracheal cannulation and were treated with an aerosolized arginase inhibitor (S-boronoethyl-L-cysteine; BEC) or vehicle, immediately before determination of respiratory function and methacholine-responsiveness using the flexiVent®. Lungs were then collected for comparison of arginase activity, protein expression, and immunohistochemical localization. Results Compared to FA, arginase activity was significantly augmented in the lungs of CAP+O3-exposed OVA/OVA mice in both the sub-acute and chronic models. Western blotting and immunohistochemical staining revealed that the increased activity was due to arginase 1 expression in the area surrounding the airways in both models. Arginase inhibition significantly reduced the CAP+O3-induced increase in AHR in both models. Conclusions This study demonstrates that arginase is upregulated following environmental exposures in murine models of asthma, and contributes to the pollution-induced exacerbation of airways responsiveness. Thus arginase may be a therapeutic target to protect susceptible populations against the adverse health effects of air pollution, such as fine particles and ozone, which are two of the major contributors to smog
    • …
    corecore