14,222 research outputs found
Novel Dynamical Resonances in Finite-Temperature Bose-Einstein Condensates
We describe a variety of intriguing mode-coupling effects which can occur in
a confined Bose-Einstein condensed system at finite temperature. These arise
from strong interactions between a condensate fluctuation and resonances of the
thermal cloud yielding strongly non-linear behaviour. We show how these
processes can be affected by altering the aspect ratio of the trap, thereby
changing the relevant mode-matching conditions. We illustrate how direct
driving of the thermal cloud can lead to significant shifts in the excitation
spectrum for a number of modes and provide further experimental scenarios in
which the dramatic behaviour observed for the mode at JILA (Jin {\it et
al.} 1997) can be repeated. Our theoretical description is based on a
successful second-order finite-temperature quantum field theory which includes
the full coupled dynamics of the condensate and thermal cloud and all relevant
finite-size effects
Morphine activates neuroinflammation in a manner parallel to endotoxin
Opioids create a neuroinflammatory response within the CNS, compromising opioid-induced analgesia and contributing to various unwanted actions. How this occurs is unknown but has been assumed to be via classic opioid receptors. Herein, we provide direct evidence that morphine creates neuroinflammation via the activation of an innate immune receptor and not via classic opioid receptors. We demonstrate that morphine binds to an accessory protein of Toll-like receptor 4 (TLR4), myeloid differentiation protein 2 (MD-2), thereby inducing TLR4 oligomerization and triggering proinflammation. Small-molecule inhibitors, RNA interference, and genetic knockout validate the TLR4/MD-2 complex as a feasible target for beneficially modifying morphine actions. Disrupting TLR4/MD-2 protein–protein association potentiated morphine analgesia in vivo and abolished morphine-induced proinflammation in vitro, the latter demonstrating that morphine-induced proinflammation only depends on TLR4, despite the presence of opioid receptors. These results provide an exciting, nonconventional avenue to improving the clinical efficacy of opioids.Xiaohui Wang, Lisa C. Loram, Khara Ramos, Armando J. de Jesus, Jacob Thomas, Kui Cheng, Anireddy Reddy, Andrew A. Somogyi, Mark R. Hutchinson, Linda R. Watkins and Hang Yi
Forelimb muscle and joint actions in Archosauria: insights from Crocodylus johnstoni (Pseudosuchia) and Mussaurus patagonicus (Sauropodomorpha)
Many of the major locomotor transitions during the evolution of Archosauria, the lineage including crocodiles and birds as well as extinct Dinosauria, were shifts from quadrupedalism to bipedalism (and vice versa). Those occurred within a continuum between more sprawling and erect modes of locomotion and involved drastic changes of limb anatomy and function in several lineages, including sauropodomorph dinosaurs. We present biomechanical computer models of two locomotor extremes within Archosauria in an analysis of joint ranges of motion and the moment arms of the major forelimb muscles in order to quantify biomechanical differences between more sprawling, pseudosuchian (represented the crocodile Crocodylus johnstoni) and more erect, dinosaurian (represented by the sauropodomorph Mussaurus patagonicus) modes of forelimb function. We compare these two locomotor extremes in terms of the reconstructed musculoskeletal anatomy, ranges of motion of the forelimb joints and the moment arm patterns of muscles across those ranges of joint motion. We reconstructed the three-dimensional paths of 30 muscles acting around the shoulder, elbow and wrist joints. We explicitly evaluate how forelimb joint mobility and muscle actions may have changed with postural and anatomical alterations from basal archosaurs to early sauropodomorphs. We thus evaluate in which ways forelimb posture was correlated with muscle leverage, and how such differences fit into a broader evolutionary context (i.e. transition from sprawling quadrupedalism to erect bipedalism and then shifting to graviportal quadrupedalism). Our analysis reveals major differences of muscle actions between the more sprawling and erect models at the shoulder joint. These differences are related not only to the articular surfaces but also to the orientation of the scapula, in which extension/flexion movements in Crocodylus (e.g. protraction of the humerus) correspond to elevation/depression in Mussaurus. Muscle action is highly influenced by limb posture, more so than morphology. Habitual quadrupedalism in Mussaurus is not supported by our analysis of joint range of motion, which indicates that glenohumeral protraction was severely restricted. Additionally, some active pronation of the manus may have been possible in Mussaurus, allowing semi-pronation by a rearranging of the whole antebrachium (not the radius against the ulna, as previously thought) via long-axis rotation at the elbow joint. However, the muscles acting around this joint to actively pronate it may have been too weak to drive or maintain such orientations as opposed to a neutral position in between pronation and supination. Regardless, the origin of quadrupedalism in Sauropoda is not only linked to manus pronation but also to multiple shifts of forelimb morphology, allowing greater flexion movements of the glenohumeral joint and a more columnar forelimb posture
An Exploratory Study of Forces and Frictions affecting Large-Scale Model-Driven Development
In this paper, we investigate model-driven engineering, reporting on an
exploratory case-study conducted at a large automotive company. The study
consisted of interviews with 20 engineers and managers working in different
roles. We found that, in the context of a large organization, contextual forces
dominate the cognitive issues of using model-driven technology. The four forces
we identified that are likely independent of the particular abstractions chosen
as the basis of software development are the need for diffing in software
product lines, the needs for problem-specific languages and types, the need for
live modeling in exploratory activities, and the need for point-to-point
traceability between artifacts. We also identified triggers of accidental
complexity, which we refer to as points of friction introduced by languages and
tools. Examples of the friction points identified are insufficient support for
model diffing, point-to-point traceability, and model changes at runtime.Comment: To appear in proceedings of MODELS 2012, LNCS Springe
Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb
Mice are one of the most commonly used laboratory animals, with an extensive array of disease models in existence, including for many neuromuscular diseases. The hindlimb is of particular interest due to several close muscle analogues/homologues to humans and other species. A detailed anatomical study describing the adult morphology is lacking, however. This study describes in detail the musculoskeletal geometry and skeletal muscle architecture of the mouse hindlimb and pelvis, determining the extent to which the muscles are adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT scanning and digital segmentation, it was possible to identify 39 distinct muscles of the hindlimb and pelvis belonging to nine functional groups. The architecture of each of these muscles was determined through microdissections, revealing strong architectural specialisations between the functional groups. The hip extensors and hip adductors showed significantly stronger adaptations towards high contraction velocities and joint control relative to the distal functional groups, which exhibited larger physiological cross sectional areas and longer tendons, adaptations for high force output and elastic energy savings. These results suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb. Such a gradient has been purported to function in aiding locomotor stability and efficiency. The data presented here will be especially valuable to any research with a focus on the architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of use to anyone interested in the functional significance of muscle design in relation to quadrupedal locomotion
High-throughput in-situ characterization and modelling of precipitation kinetics in compositionally graded alloys
The development of new engineering alloy chemistries is a time consuming and
iterative process. A necessary step is characterization of the
nano/microstructure to provide a link between the processing and properties of
each alloy chemistry considered. One approach to accelerate the identification
of optimal chemistries is to use samples containing a gradient in composition,
ie. combinatorial samples, and to investigate many different chemistries at the
same time. However, for engineering alloys, the final properties depend not
only on chemistry but also on the path of microstructure development which
necessitates characterization of microstructure evolution for each chemistry.
In this contribution we demonstrate an approach that allows for the in-situ,
nanoscale characterization of the precipitate structures in alloys, as a
function of aging time, in combinatorial samples containing a composition
gradient. The approach uses small angle x-ray scattering (SAXS) at a
synchrotron beamline. The Cu-Co system is used for the proof-of-concept and the
combinatorial samples prepared contain a gradient in Co from 0% to 2%. These
samples are aged at temperatures between 450{\textdegree}C and
550{\textdegree}C and the precipitate structures (precipitate size, volume
fraction and number density) all along the composition gradient are
simultaneously monitored as a function of time. This large dataset is used to
test the applicability and robustness of a conventional class model for
precipitation that considers concurrent nucleation, growth and coarsening and
the ability of the model to describe such a large dataset.Comment: Published in Acta Materiali
Effects of temperature upon the collapse of a Bose-Einstein condensate in a gas with attractive interactions
We present a study of the effects of temperature upon the excitation
frequencies of a Bose-Einstein condensate formed within a dilute gas with a
weak attractive effective interaction between the atoms. We use the
self-consistent Hartree-Fock Bogoliubov treatment within the Popov
approximation and compare our results to previous zero temperature and
Hartree-Fock calculations The metastability of the condensate is monitored by
means of the excitation frequency. As the number of atoms in the
condensate is increased, with held constant, this frequency goes to zero,
signalling a phase transition to a dense collapsed state. The critical number
for collapse is found to decrease as a function of temperature, the rate of
decrease being greater than that obtained in previous Hartree-Fock
calculations.Comment: 4 pages LaTeX, 3 eps figures. To appear as a letter in J. Phys.
- …