2,465 research outputs found

    Apollo mission D performance analysis of rendezvous charts

    Get PDF
    Performance analysis of rendezvous charts for Apollo 9 missio

    P-bodies are sites of rapid RNA decay during the neural crest epithelial-mesenchymal transition

    Get PDF
    The epithelial-mesenchymal transition (EMT) drives cellular movements during development to create specialized tissues and structures in metazoans, using mechanisms often coopted during metastasis. Neural crest cells are a multipotent stem cell population that undergo a developmentally regulated EMT and are prone to metastasis in the adult, providing an excellent model to study cell state changes and mechanisms underlying EMT. A hallmark of neural crest EMT during avian development is temporally restricted expression followed by rapid down-regulation of the Wnt antagonist Draxin. Using live RNA imaging, here we demonstrate that rapid clearance of Draxin transcripts is mediated post-transcriptionally via localization to processing bodies (P-bodies), small cytoplasmic granules which are established sites of RNA processing. Contrasting with recent work in immortalized cell lines suggesting that P-bodies are sites of storage rather than degradation, we show that targeted decay of Draxin occurs within P-bodies during neural crest migration. Furthermore, P-body disruption via DDX6 knockdown inhibits not only endogenous Draxin down-regulation but also neural crest EMT in vivo. Together, our data highlight a novel and important role for P-bodies in an intact organismal context−controlling a developmental EMT program via post-transcriptional target degradation

    In-depth analysis of the Naming Game dynamics: the homogeneous mixing case

    Get PDF
    Language emergence and evolution has recently gained growing attention through multi-agent models and mathematical frameworks to study their behavior. Here we investigate further the Naming Game, a model able to account for the emergence of a shared vocabulary of form-meaning associations through social/cultural learning. Due to the simplicity of both the structure of the agents and their interaction rules, the dynamics of this model can be analyzed in great detail using numerical simulations and analytical arguments. This paper first reviews some existing results and then presents a new overall understanding.Comment: 30 pages, 19 figures (few in reduced definition). In press in IJMP

    Gesture analysis for physics education researchers

    Full text link
    Systematic observations of student gestures can not only fill in gaps in students' verbal expressions, but can also offer valuable information about student ideas, including their source, their novelty to the speaker, and their construction in real time. This paper provides a review of the research in gesture analysis that is most relevant to physics education researchers and illustrates gesture analysis for the purpose of better understanding student thinking about physics.Comment: 14 page

    Temporal changes in plasma membrane lipid content induce endocytosis to regulate developmental epithelial-to-mesenchymal transition

    Get PDF
    Epithelial-to-mesenchymal transition (EMT) is a dramatic change in cellular physiology during development and metastasis which involves coordination between cell signaling, adhesion, and membrane protrusions. These processes all involve dynamic changes in the plasma membrane, yet how membrane lipid content regulates membrane function during developmental EMT remains incompletely understood. By screening for differential expression of lipid-modifying genes over the course of EMT in avian neural crest, we have identified the ceramide-producing enzyme neutral sphingomyelinase 2 (nSMase2) as a critical regulator of a developmental EMT. nSMase2 expression begins at the onset of EMT, and in vivo knockdown experiments demonstrate that nSMase2 is necessary for neural crest migration. Further, we find that nSMase2 promotes Wnt and BMP signaling, and is required to activate the mesenchymal gene expression program. Mechanistically, we show that nSMase2 is sufficient to induce endocytosis, and that inhibition of endocytosis mimics nSMase2 knockdown. Our results support a model in which nSMase2 is expressed at the onset of neural crest EMT to produce ceramide and induce membrane curvature, thus increasing endocytosis of Wnt and BMP signaling complexes and activating pro-migratory gene expression. These results highlight the critical role of plasma membrane lipid metabolism in regulating transcriptional changes during developmental EMT programs

    Note and Comment

    Get PDF
    Waiver of the Statutory Protection to the confidential Relation of Physician and Patient; Inter-State Rendition; When a Public Officer Misappropriating Public Funds is Not an Embezzler; When a Discharged Teacher May Resort to the Courts

    Development and evaluation of a musculoskeletal model of the elbow joint complex

    Get PDF
    This paper describes the development and evaluation of a musculoskeletal model that represents human elbow flexion-extension and forearm pronation-supination. The length, velocity, and moment arm for each of the eight musculotendon actuators were based on skeletal anatomy and position. Musculotendon parameters were determined for each actuator and verified by comparing analytical torque-angle curves with experimental joint torque data. The parameters and skeletal geometry were also utilized in the musculoskeletal model for the analysis of ballistic elbow joint complex movements. The key objective was to develop a computational model, guided by parameterized optimal control, to investigate the relationship among patterns of muscle excitation, individual muscle forces, and movement kinematics. The model was verified using experimental kinematic, torque, and electromyographic data from volunteer subjects performing ballistic elbow joint complex movements

    Note and Comment

    Get PDF
    Internal Revenue Tax on State Dispensaries Upheld; What is the Practice of Medicine?; Appeals from Decrees for Costs; The Hearst Election Contest; The Lapse of a Legacy to a Deceased Child; Unsightly Advertisements and Billboard

    Sharp transition towards shared vocabularies in multi-agent systems

    Get PDF
    What processes can explain how very large populations are able to converge on the use of a particular word or grammatical construction without global coordination? Answering this question helps to understand why new language constructs usually propagate along an S-shaped curve with a rather sudden transition towards global agreement. It also helps to analyze and design new technologies that support or orchestrate self-organizing communication systems, such as recent social tagging systems for the web. The article introduces and studies a microscopic model of communicating autonomous agents performing language games without any central control. We show that the system undergoes a disorder/order transition, going trough a sharp symmetry breaking process to reach a shared set of conventions. Before the transition, the system builds up non-trivial scale-invariant correlations, for instance in the distribution of competing synonyms, which display a Zipf-like law. These correlations make the system ready for the transition towards shared conventions, which, observed on the time-scale of collective behaviors, becomes sharper and sharper with system size. This surprising result not only explains why human language can scale up to very large populations but also suggests ways to optimize artificial semiotic dynamics.Comment: 12 pages, 4 figure
    • …
    corecore