P-bodies are sites of rapid RNA decay during the neural crest epithelial-mesenchymal transition

Abstract

The epithelial-mesenchymal transition (EMT) drives cellular movements during development to create specialized tissues and structures in metazoans, using mechanisms often coopted during metastasis. Neural crest cells are a multipotent stem cell population that undergo a developmentally regulated EMT and are prone to metastasis in the adult, providing an excellent model to study cell state changes and mechanisms underlying EMT. A hallmark of neural crest EMT during avian development is temporally restricted expression followed by rapid down-regulation of the Wnt antagonist Draxin. Using live RNA imaging, here we demonstrate that rapid clearance of Draxin transcripts is mediated post-transcriptionally via localization to processing bodies (P-bodies), small cytoplasmic granules which are established sites of RNA processing. Contrasting with recent work in immortalized cell lines suggesting that P-bodies are sites of storage rather than degradation, we show that targeted decay of Draxin occurs within P-bodies during neural crest migration. Furthermore, P-body disruption via DDX6 knockdown inhibits not only endogenous Draxin down-regulation but also neural crest EMT in vivo. Together, our data highlight a novel and important role for P-bodies in an intact organismal context−controlling a developmental EMT program via post-transcriptional target degradation

    Similar works