84 research outputs found

    Development of superlattice CrNNbN coatings for joint replacements deposited by High Power Impulse Magnetron Sputtering

    Get PDF
    The demand for reliable coating on medical implants is ever growing. In this research, enhanced performance of medical implants was achieved by a CrN/NbN coating utilising nanoscale multilayer/superlattice structure. The advantages of the novel High Power Impulse Magnetron Sputtering technology, namely its unique highly ionised plasma were exploited to deposit dense and strongly adherent coatings on Co-Cr implants. TEM analyses revealed coating superlattice structure with bi-layer thickness of 3.5 nm. CrN/NbN deposited on Co-Cr samples showed exceptionally high adhesion, critical load values of LC2= 50 N in scratch adhesion tests. Nanoindentation tests showed high hardness of 34 GPa and Young's modulus of 447 GPa. Low coefficient of friction (µ) 0.49 and coating wear coefficient (KC) = 4.94 x 10-16 m3N-1m-1 were recorded in dry sliding tests. Metal ion release studies showed a reduction in Co, Cr and Mo release at physiological and elevated temperatures, (70 oC) to almost undetectable levels (<1 ppb). Rotating beam fatigue testing showed a significant increase in fatigue strength from 349±59 MPa (uncoated) to 539±59 MPa (coated). In vitro biological testing has been performed in order to assess the safety of the coating in biological environment, cytotoxicity, genotoxicity and sensitisation testing have been performed, all showing no adverse effects. Keywords: Orthopaedic implant, High Power Impulse Magnetron Sputtering, Superlattice coating, Corrosion, Biocompatibility

    Continuous observations of the surface energy budget and meteorology over the Arctic sea ice during MOSAiC

    Get PDF
    The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) was a yearlong expedition supported by the icebreaker R/V Polarstern, following the Transpolar Drift from October 2019 to October 2020. The campaign documented an annual cycle of physical, biological, and chemical processes impacting the atmosphere-ice-ocean system. Of central importance were measurements of the thermodynamic and dynamic evolution of the sea ice. A multi-agency international team led by the University of Colorado/CIRES and NOAA-PSL observed meteorology and surface-atmosphere energy exchanges, including radiation; turbulent momentum flux; turbulent latent and sensible heat flux; and snow conductive flux. There were four stations on the ice, a 10 m micrometeorological tower paired with a 23/30 m mast and radiation station and three autonomous Atmospheric Surface Flux Stations. Collectively, the four stations acquired ~928 days of data. This manuscript documents the acquisition and post-processing of those measurements and provides a guide for researchers to access and use the data products

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990�2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors�the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25 over the same period. All risks jointly evaluated in 2015 accounted for 57·8 (95 CI 56·6�58·8) of global deaths and 41·2 (39·8�42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million 192·7 million to 231·1 million global DALYs), smoking (148·6 million 134·2 million to 163·1 million), high fasting plasma glucose (143·1 million 125·1 million to 163·5 million), high BMI (120·1 million 83·8 million to 158·4 million), childhood undernutrition (113·3 million 103·9 million to 123·4 million), ambient particulate matter (103·1 million 90·8 million to 115·1 million), high total cholesterol (88·7 million 74·6 million to 105·7 million), household air pollution (85·6 million 66·7 million to 106·1 million), alcohol use (85·0 million 77·2 million to 93·0 million), and diets high in sodium (83·0 million 49·3 million to 127·5 million). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation. © 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY licens

    Metallic Coefficient of Friction

    No full text

    Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    No full text
    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharply reducing the erosive wear at high erodent impact angles, whilst retaining the good erosion resistance of ceramics at low angles. It is shown that the proportion of metal and ceramic at the free surface can be specified so as to optimise the erosion resistance. Experiments have also been carried out on the resistance of the coatings to debonding during four-point bending of the coated substrate. Progress is being made towards the tailoring of composition profiles in graded coatings so as to optimise the combination of erosion resistance and adhesion

    TEM characterisation of near surface deformation resulting from lubricated sliding wear of aluminium alloy and composites

    No full text
    Aluminium alloy composites have been extensively investigated for use in tribo-contact applications, however little detailed literature exists on the sub-surface microstructural evolution as a result of lubricated sliding wear. In this study two un-reinforced alloys (2124 and 5056) and identical alloy composites, reinforced with 15 vol.% MoSi2 intermetallic particles were produced by a powder metallurgy route and subject to lubricated sliding at initial Hertzian contact pressures of 0.9–1.2 GPa. Focused ion beam (FIB) techniques were used to produce thin sections parallel to the worn surface. Sub-surfaces layers were then examined in detail by transmission electron microscopy (TEM). Results indicated that the depth of deformation was minimal in the alloys, with the most highly deformed polycrystalline layer confined to approximately 1 ?m below the worn surface. Equiaxed sub-grain sizes of around 0.1 ?m were comparable to that observed for dry sliding of similar alloys and composites [1]. Evidence of surface erosion by solid particle impact was also observed, with wear debris generated as a result of material exceeding the ductility limit. For the composites, the MoSi2 provided a suitable means of transferring the normal contact load from asperity contacts to areas in the bulk of the sample. Reinforcement fracture was observed both at the worn surface and in areas further away in the bulk, for particles which were in direct contact with each other. Evidence of the deformation of the aluminium matrix below reinforcements was also present, with average sub-grain sizes of around 330 nm. Thus, such intermetallic reinforcements may have potential to replace reinforcements that are more abrasive to counterfaces, such as SiC or Al2O3, whilst still providing adequate wear resistance for the aluminium alloy.<br/
    corecore