1,174 research outputs found

    Mountain building and mantle dynamics

    Get PDF
    International audienceMountain building at convergent margins requires tectonic forces that can overcome frictional resistance along large-scale thrust faults and support the gravitational potential energy stored within the thickened crust of the orogen. A general, dynamic model for this process is still lacking. Here we propose that mountain belts can be classified between two end-members. First, those of "slab pull" type, where subduction is mainly confined to the upper mantle, and rollback trench motion lead to moderately thick crustal stacks, such as in the Mediterranean. Second, those of "slab suction" type, where whole-mantle convection cells ("conveyor belts") lead to the more extreme expressions of orogeny, such as the largely thickened crust and high plateaus of present-day Tibet and the Altiplano. For the slab suction type, deep mantle convection produces the unique conditions to drag plates toward each other, irrespective of their nature and other boundary conditions. We support this hypothesis by analyzing the orogenic, volcanic, and convective history associated with the Tertiary formation of the Andes after ~40 Ma and Himalayas after collision at ~55 Ma. Based on mantle circulation modeling and tectonic reconstructions, we surmise that the forces necessary to sustain slab-suction mountain building in those orogens derive, after transient slab ponding, from the mantle drag induced upon slab penetration into the lower mantle, and from an associated surge of mantle upwelling beneath Africa. This process started at ~65-55 Ma for Tibet-Himalaya, when the Tethyan slab penetrated into the lower mantle, and ~10 Myr later in the Andes, when the Nazca slab did. This surge of mantle convection drags plates against each other, generating the necessary compressional forces to create and sustain these two orogenic belts. If our model is correct, the available geological records of orogeny can be used to decipher time-dependent mantle convection, with implications for the supercontinental cycle

    Polymer Sensors for the Quantification of Waterborne Uranium

    Get PDF
    Clandestine activities involving the separation, concentration or manipulation of special nuclear material for the express purpose of developing a weapon of mass destruction is likely to result in the contamination of environmental water sources. The capability to conduct isotopic analyses for waterborne special nuclear material, like uranium, would be a powerful nuclear forensics tool. Despite widespread interest, there currently is no on-line or field-able measurement system available for low-level quantification of uranium in aqueous solutions. A recent development in environmental sensing is a portable, flow cell detector that utilizes extractive scintillating (ES) resin. The ES resin serves the dual purpose of (1) concentrating the radionuclide of interest and (2) serving as a radiation transducer. Currently, such resins are produced by physically absorbing organic extractants and fluors into a polymer matrix. Unfortunately, this approach yields resins with poor stability as the active components leach from the resin over time. This contribution describes our work to increase resin stability by synthesizing ES resin in which the active components are bound covalently within the polymer matrix. The extraction and fluorescence properties of the resin were studied separately before the resin was applied in flow cell detector where detection efficiencies of 40% were achieved

    Water in Comet 2/2003 K4 (LINEAR) with Spitzer

    Full text link
    We present sensitive 5.5 to 7.6 micron spectra of comet C/2003 K4 (LINEAR) obtained on 16 July 2004 (r_{h} = 1.760 AU, Delta_{Spitzer} = 1.409 AU, phase angle 35.4 degrees) with the Spitzer Space Telescope. The nu_{2} vibrational band of water is detected with a high signal-to-noise ratio (> 50). Model fitting to the best spectrum yields a water ortho-to-para ratio of 2.47 +/- 0.27, which corresponds to a spin temperature of 28.5^{+6.5}_{-3.5} K. Spectra acquired at different offset positions show that the rotational temperature decreases with increasing distance from the nucleus, which is consistent with evolution from thermal to fluorescence equilibrium. The inferred water production rate is (2.43 +/- 0.25) \times 10^{29} molec. s^{-1}. The spectra do not show any evidence for emission from PAHs and carbonate minerals, in contrast to results reported for comets 9P/Tempel 1 and C/1995 O1 (Hale-Bopp). However, residual emission is observed near 7.3 micron the origin of which remains unidentified.Comment: 33 pages, including 11 figures, 2 tables, ApJ 2007 accepte

    An immunotherapy survivor population: health-related quality of life and toxicity in patients with metastatic melanoma treated with immune checkpoint inhibitors

    Get PDF
    © The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Purpose The immune checkpoint inhibitors (ICIs) have resulted in subgroups of patients with metastatic melanoma achievinghigh-quality durable responses. Metastatic melanoma survivors are a new population in the era of cancer survivorship. The aimofthis study was to evaluate metastatic melanoma survivors in terms of health-related quality of life (HRQoL), immune-relatedadverse events (irAEs) and exposure to immunosuppressive agents in a large single centre in the UK.Methods We defined the survivor population as patients with a diagnosis of metastatic melanoma who achieved a durableresponse to an ICI and had been followed-up for a minimum of 12 months from initiation of ICI without disease progression.HRQoL was assessed using SF-36. Electronic health records were accessed to collect data on demographics, treatments, irAEsand survival. HRQoL data was compared with two norm-based datasets.Results Eighty-four metastatic melanoma survivors were eligible and 87% (N = 73) completed the SF-36. ICI-related toxicity ofany grade occurred in 92%of patients and 43%had experienced a grade 3 or 4 toxicity. Almost half (49%) of the patients requiredsteroids for the treatment of ICI-related toxicity, whilst 14% required treatment with an immunosuppressive agent beyondsteroids.Melanoma survivors had statistically significant lower HRQoL scores with regard to physical, social and physical rolefunctioning and general health compared with the normative population. There was a trend towards inferior scores in patientswith previous exposure to ipilimumab compared with those never exposed to ipilimumab.Conclusions Our results show that metastatic melanoma survivors have potentially experienced significant ICI-related toxicityand experience significant impairments in specific HRQoL domains. Future service planning is required to meet this population’sunique survivorship needs.Peer reviewe

    Measurement of the 3He mass diffusion coefficient in superfluid 4He over the 0.45-0.95 K temperature range

    Full text link
    We have measured the mass diffusion coefficient D of 3He in superfluid 4He at temperatures lower than were previously possible. The experimental technique utilizes scintillation light produced when neutron react with 3He nuclei, and allows measurement of the 3He density integrated along the trajectory of a well-defined neutron beam. By measuring the change in 3He density near a heater as a function of applied heat current, we are able to infer values of D with 20% accuracy. At temperatures below 0.7 K and for concentrations of order 10^{-4} we find D=(2.0+2.4-1.2)T^-(6.5 -/+ 1.2) cm^2/s, in agreement with a theoretical approximation.Comment: 8 pages, 5 figures. Submitted to Europhysics Letters and prepared in that journal's forma

    Electrostatic model of atomic ordering in complex perovskite alloys

    Full text link
    We present a simple ionic model which successfully reproduces the various types of compositional long-range order observed in a large class of complex insulating perovskite alloys. The model assumes that the driving mechanism responsible for the ordering is simply the electrostatic interaction between the different ionic species. A possible new explanation for the anomalous long-range order observed in some Pb relaxor alloys, involving the proposed existence of a small amount of Pb^4+ on the B sublattice, is suggested by an analysis of the model.Comment: 4 pages, two-column style with 1 postscript figure embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#lb_orde

    Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres

    Get PDF
    We present a comprehensive description of the theory and practice of opacity calculations from the infrared to the ultraviolet needed to generate models of the atmospheres of brown dwarfs and extrasolar giant planets. Methods for using existing line lists and spectroscopic databases in disparate formats are presented and plots of the resulting absorptive opacities versus wavelength for the most important molecules and atoms at representative temperature/pressure points are provided. Electronic, ro-vibrational, bound-free, bound-bound, free-free, and collision-induced transitions and monochromatic opacities are derived, discussed, and analyzed. The species addressed include the alkali metals, iron, heavy metal oxides, metal hydrides, H2H_2, H2OH_2O, CH4CH_4, COCO, NH3NH_3, H2SH_2S, PH3PH_3, and representative grains. [Abridged]Comment: 28 pages of text, plus 22 figures, accepted to the Astrophysical Journal Supplement Series, replaced with more compact emulateapj versio
    • 

    corecore