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Abstract:  Detailed iron, sulfur and carbon chemistry through the >742 million year old Chuar 19 

Group reveals a marine basin dominated by anoxic and ferrous iron-rich (ferruginous) bottom 20 

waters punctuated, late in the basin’s development, by an intrusion of sulfide-rich (euxinic) 21 

conditions.  The observation that anoxia occurred frequently in even the shallowest of Chuar 22 

environments (10s of meters or less) suggests that global atmospheric oxygen levels were 23 

significantly lower than today.  In contrast, the transition from ferruginous to euxinic subsurface 24 

water is interpreted to reflect basinal control – specifically, increased export of organic carbon 25 

from surface waters.  Low fluxes of organic carbon into subsurface water masses should have 26 

been insufficient to deplete oxygen via aerobic respiration, resulting in an oxic oxygen minimum 27 

zone (OMZ).  Where iron was available, larger organic carbon fluxes should have depleted 28 

oxygen and facilitated anaerobic respiration using ferric iron as the oxidant, with iron carbonate 29 

as the expected mineralogical signature in basinal shale.  Even higher organic fluxes would, in 30 

turn, have depleted ferric iron and up-regulated anaerobic respiration by sulfate reduction, 31 

reflected in high pyrite abundances. Observations from the Chuar Group are consistent with 32 

these hypotheses, and gain further support from pyrite and sulfate sulfur isotope abundances.  In 33 
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general, Chuar data support the hypothesis that ferruginous subsurface waters returned to the 34 

oceans, replacing euxinia, well before the Ediacaran emergence of persistently oxygenated 35 

conditions, and even predating the Sturtian glaciation.  Moreover, our data suggest that the 36 

reprise of ferruginous water masses may relate to widespread rifting during the break-up of 37 

Rodinia.  This environmental transition, in turn, correlates with both microfossil and biomarker 38 

evidence for an expanding eukaryotic presence in the oceans, suggesting a physiologically 39 

mediated link among tectonics, environmental chemistry and life in the dynamic Neoproterozoic 40 

Earth system. 41 

 42 

Keywords:  Neoproterozoic, oxygenation, iron, sulfur, ocean chemistry, paleobiology 43 

 44 

1.0. Introduction 45 

 An intimate relationship exists between the chemistry of Earth’s oceans and the 46 

complexity and diversity of its inhabitants (e.g., Cloud, 1976; Knoll, 1992; Anbar and Knoll, 47 

2002).  For much of Earth history, water masses beneath the surface mixed layer were 48 

predominantly anoxic, with ferruginous (anoxic and containing dissolved ferrous iron, Fe2+) 49 

Archean seas (e.g., Holland, 1984; Walker and Brimblecombe, 1985; Isley and Abbott, 1999; 50 

Farquhar et al., 2000) giving way, after 1.9-1.8 Ga, to oceans that were oxic in the surface mixed 51 

layer but commonly sulfidic in subjacent water masses (Canfield, 1998; Shen et al., 2002; 2003; 52 

Poulton et al., 2004a).  More persistently oxic subsurface waters appeared during the latest 53 

Proterozoic Ediacaran Period (Fike et al., 2006; Canfield et al., 2007; Shen et al., 2008), but 54 

recent evidence suggests that this Neoproterozoic environmental transition may have been more 55 

protracted and complex.   Specifically, Canfield et al. (2008) presented evidence for a return to 56 

ferruginous subsurface waters more than 100 million years before terminal Proterozoic oxygen 57 

enrichment (Canfield et al., 2008).  If ferruginous conditions were a common feature of later 58 

Neoproterozoic oceans, this would have important implications for our thinking about both life 59 

and biogeochemical cycling during that critical time. 60 

  The chemical profiles of ancient oceans reflect the interplay of oxygen (O), iron (Fe) and 61 

sulfur (S) as they participate in the carbon (C) cycle. A means of testing and extending the 62 

Canfield et al. (2008) hypothesis is through additional Fe-speciation chemistry (cf. Nagy et al. 63 

2009), and further joining these data with complementary biogeochemical information.  To 64 
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maximize interpretational value, however, analyses should be carried out within a well-65 

characterized stratigraphic framework, and preferably one with direct radiometric age constraints 66 

and a rich fossil record (both morphological and molecular).  The ~740-800 million year old 67 

(Ma) Chuar Group, exposed within the Grand Canyon, Arizona, exhibits all of these attributes.  68 

A well-constrained U-Pb date of 742 +/-6 Ma for volcanic ash near the top of the succession 69 

(Karlstrom et al., 2000), detailed information on stratigraphy and sedimentology (Dehler et al., 70 

2001), carbon isotope chemostratigraphy (Dehler et al., 2005), organic geochemistry (Summons 71 

et al., 1988; Ventura et al., 2005), and diverse microfossils (Schopf et al., 1973; Vidal and Ford, 72 

1985; Porter and Knoll, 2000; Porter et al., 2003; Nagy et al., 2009) collectively provide an 73 

appropriate framework for continued studies of Neoproterozoic, and particularly Chuar Group, 74 

seawater chemistry.  In this study, we present geochemical data that enable us to reconstruct 75 

water column chemistry in the Chuar basin and use these to address three principal questions: a) 76 

What combination of global and basinal conditions underpin observed chemical variations within 77 

the Chuar succession?  b) How do Chuar data constrain hypotheses about ferruginous water 78 

masses in Neoproterozoic oceans?  And c) What are the consequences of the reconstructed Chuar 79 

water column for life within the Chuar basin and beyond?   80 

 81 

2.0 Geologic Setting 82 

 The Neoproterozoic Chuar Group is part of the Grand Canyon Supergroup; it is underlain 83 

by the Mesoproterozoic Unkar Group and early Neoproterozoic Nankoweap Formation and 84 

overlain by the mid- to late Neoproterozoic Sixtymile Formation or Cambrian strata (Fig. 1).  85 

The Chuar Group is exposed exclusively in eastern Grand Canyon and includes the Galeros 86 

Formation (Tanner, Jupiter, Carbon Canyon and Duppa members) and overlying Kwagunt 87 

Formation, which, in turn, is subdivided into the Carbon Butte, Awatubi, and Walcott members 88 

(Figs. 1 and 2; Ford and Breed, 1973).  In total, the Chuar Group includes ~1600 meters of 89 

gently folded, shale, with meter-scale interbeds of carbonate and sandstone (Ford and Breed, 90 

1973). Facies analysis and stratigraphy suggest a wave- and tide-influenced depositional system 91 

within an intracratonic basin (Dehler et al., 2001).  The dolomite and sandstone beds cap meter-92 

scale cycles that reflect low to moderate amplitude sea-level changes considered to be 93 

glacioeustatic in origin (Dehler et al., 2001). In combination, sedimentology and 94 

cyclostratigraphy suggest that water depths fluctuated but never exceeded 10s to 100s of meters 95 
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throughout the interval recorded by Chuar deposition (Dehler et al., 2001).  Several lines of 96 

evidence, including sedimentary structures (Dehler et al., 2001), microfossils (Vidal and Ford, 97 

1986; Porter and Knoll, 2000), cyclostratigraphy (Dehler et al., 2001), and geochemical records 98 

(Dehler et al., 2005), suggest that the Chuar basin was in communication with the global ocean.  99 

Chuar strata record deposition  in an intracratonic extensional basin that formed in response to 100 

the early break-up of Rodinia (Timmons et al., 2001), and is broadly similar to intracratonic and 101 

rift basins seen globally at this time (Knoll et al., 1986; Rainbird et al., 1996; Dalziel, 1997; 102 

Preiss, 2000; Li et al., 2003).   Paleomagnetic data place the Chuar basin in the tropics, between 103 

2ºS and 18ºN (Weil et al., 2004).     104 

 The age of the Chuar Group is well constrained.  A U-Pb zircon age of 742 +/- 6 Ma for 105 

an ash bed near the top of the Walcott Member places a firm constraint on the end of Chuar 106 

deposition (Karlstrom et al., 2000). Chuar strata have been placed stratigraphically below the 107 

earliest (Sturtian: Hoffman and Li, 2009) glacially-influenced diamictite deposits in western 108 

North America based upon correlation (e.g., Link et al., 1993; Dehler et al., 2001) and absolute 109 

ages (Karlstrom et al., 2000; Fanning and Link, 2004; 2008). Further evidence for the age of 110 

Chuar strata comes from the discovery of Cerebrosphaera buickii (Nagy et al., 2009), a proposed 111 

pre-Sturtian (~777 Ma) index fossil (Hill, 2000).  The Chuar Group is interpreted as being 112 

internally relatively conformable (Dehler et al., 2001), and if one assumes a realistic 113 

accumulation rate of 20-30 m/106 years (Sadler, 1981) deposition would have commenced 114 

around 800 Ma.  This is consistent with the depositional duration of ~30 million years based on 115 

300 m-scale cycles, each hypothesized to represent ~100 thousand years (Dehler et al., 2001).  116 

  117 

3.0 Methods: 118 

 Fe-speciation was completed following methods outlined in Poulton and Canfield (2005).  119 

This sequential extraction method allows for the quantification of ferric oxide phases such as 120 

goethite, hematite (FeOx) and magnetite (FeMag), and Fe-carbonate such as siderite and ankerite 121 

(FeCarb).  Total Fe (FeT) was determined via a separate HF-HNO3-HClO4 extraction. All Fe 122 

analyses were performed by atomic absorption spectroscopy. Iron sulfide minerals were 123 

extracted by chromium reduction following Canfield et al. (1986). Pyrite Fe (FePy) was 124 

determined gravimetrically after trapping the sulfide liberated during chromium digestion as 125 

Ag2S. We adopt a conservative estimate of uncertainty at ~4 % (relative standard deviation), 126 
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which reflects the external reproducibility of the extraction techniques (Canfield et al., 2008).  127 

Carbonate-associated sulfate was extracted following a modified Burdett et al. (1989) method, as 128 

summarized in Gill et al. (2008).  Carbonate powders were rinsed twice with DI water, treated 129 

with hypochlorite, rinsed two more times with DI water, and dissolved with 4N HCl.  After 130 

filtration, sulfate was precipitated with addition of a concentrated BaCl2 solution.  Sulfur isotope 131 

analyses of Ag2S and BaSO4 were performed on a ThermoFinnigan Delta Plus by conversion to 132 

SO2 with a standard reproducibility of 0.2‰. 133 

 Minerals extracted via the sequential Fe technique are considered highly reactive towards 134 

(bio)geochemical cycling during deposition and early diagenesis (Canfield et al., 1992; Poulton 135 

et al., 2004b).  After the inclusion of any Fe that has been converted to sulfides, this suite is 136 

operationally defined as the highly reactive Fe pool (FeHR = FeOx + FeMag + FeCarb + FePy). 137 

The remaining Fe (i.e. FeT – FeHR) includes Fe in clay minerals and associated with other 138 

silicates; it is essentially unreactive on the timescales associated with deposition and early 139 

diagenesis (here termed FeU; Raiswell and Canfield, 1996; 1998; Poulton and Raiswell, 2002). 140 

 141 

4.0 Results 142 

 FeT in Chuar samples is unexceptional (Fig. 3, Table S1 in supplemental material).  Two 143 

anomalously enriched samples notwithstanding, the lower ~ 1200m of Chuar stratigraphy 144 

records low mean Fe concentrations of ~ 2 wt%.  The upper 400m, and especially the interval 145 

1200-1400m, contains slightly less Fe, averaging ~1.5 wt%.  On average, 64 % of FeT 146 

throughout the Chuar Group resides in the operationally defined unreactive phase (FeU). 147 

Oxidized Fe (FeOx) generally constitutes a small proportion of both the total Fe budget 148 

(FeOx/FeT; average 5 %) and the FeHR pool (FeOx/FeHR ~9 %), although there are notable 149 

relative enrichments of FeOx in a few intervals, particularly toward the top of the succession 150 

(Figure 3). Magnetite is also a minor component, accounting for 9% of the FeHR pool 151 

(FeMag/FeHR) and 3% of FeT (FeMag/FeT). 152 

  Iron carbonate (FeCarb) comprises the largest fraction of the highly reactive Fe budget 153 

through much of the succession; however, in terms of FeT, FeCarb contents are rather variable, 154 

with FeCarb/FeT varying from 74% down to 2% (average 30%).  The remainder of the reduced 155 

FeHR pool is pyrite (FePy).  Pyrite concentrations are low through the lower km of the Chuar 156 

succession, generally only contributing ~0.5 % of total Fe (FePy/FeT) and 1.5 % of the FeHR 157 
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pool (FePy/FeHR).  The interval from 1200-1600m, however, records marked pyrite enrichment, 158 

with FePy concentrations of up to 3 wt% (FePy/total rock).  In these horizons, FePy dominates 159 

the FeHR pool.  160 

For samples from which sulfide was successfully extracted, pyrite δ34S values range 161 

widely, from 19.4 to -48.3 ‰ (Figure 4).  Variability is much greater over the lower ~1000m of 162 

the stratigraphy; values through the upper ~ 400 m cluster around a mean of 9.25‰ (±6.8‰).  163 

Sulfate sulfur, the redox complement to pyrite, was successfully extracted from 12 carbonate 164 

beds within the Chuar succession (see Table S2 in supplemental material); concentrations and 165 

δ34S values range from 37 to 695 ppm and 2.10 to 24.57‰, respectively (Figure 4). 166 

 167 

5.0 Discussion 168 

5.1 Chuar water-column chemistry:   169 

 Anoxia was common in subsurface water masses of Proterozoic oceans, and in this 170 

respect the Chuar basin appears typical.  Total iron concentrations are slightly lower than 171 

average shale composition (Turekian and Wedepohl, 1961), but not inconsistent with the ranges 172 

reported in other Neoproterozoic studies (Canfield et al., 2008).  Empirically, FeHR/FeT values 173 

greater than 0.38 reflect deposition under anoxic conditions, whereas significantly lower values 174 

generally suggest oxic bottom water (Canfield et al., 1992; Raiswell and Canfield, 1998; 175 

Raiswell et al., 2001; Poulton and Raiswell, 2002).  FeHR enrichment during anoxic deposition 176 

reflects enhanced rates of FeHR precipitation (pyrite in sulfidic basins or ferric oxides, magnetite 177 

or siderite in ferruginous basins) from anoxic water masses. As Figure 4 shows, FeHR/FeT is 178 

variable throughout the Chuar Group, fluctuating repeatedly around the 0.38 threshold value.  179 

Values are more regularly above the modern oxic water column average of 0.26 (Poulton and 180 

Raiswell, 2002) and often fall in the equivocal range between definitive ‘anoxia’ and modern 181 

oxic sediment.  Anoxia is most prominent in the deepest waters, represented by the Awatubi and 182 

Walcott members, but is also common in shallow shelf environments -- waters that would have 183 

been below the mixed layer only under unusual shoaling of this boundary.   184 

As our analyses are on outcrop samples, we must consider possible contributions from 185 

secondary alteration by oxidative weathering, even though samples with visible surface staining 186 

and Fe-oxidation were avoided.  Post-depositional weathering reactions would cause the 187 

speciation within the FeHR pool to change in a systematic fashion. To better understand the 188 
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implications of weathering-related secondary effects, we consider the two obvious end-members. 189 

If we assume no oxidation of outcrop material, then the primary shale composition is that which 190 

we report here. The other end-member would suggest that the Fe-oxides result from post-191 

depositional oxidative weathering, and that most of the Fe3+ now forming the FeOx pool was 192 

originally Fe2+.  In the Chuar samples, FeOx contents are generally very low (Figure 3), 193 

indicating that we can readily discount any significant influence of secondary oxidative 194 

weathering for most of the succession. There are, however, some intervals, particularly towards 195 

the top of the succession, where Fe oxides are relatively enriched. It is difficult to rule out 196 

completely any influence of oxidative weathering in these cases. However, the close proximity 197 

of these samples to other samples that contain appreciable ferrous carbonate and pyrite (Figure 198 

3), coupled with the overall low FeOx contents for the remainder of the section, implies that 199 

secondary oxidative weathering is unlikely to have exerted a strong influence on the conclusions 200 

drawn here from mineralogical analyses.. 201 

 Setting aside secondary oxidation, our Fe extraction data then suggest that for most of the 202 

interval recorded by Chuar stratigraphy anoxia was accompanied by Fe2+ in the water column.  203 

This conclusion is derived from the relationship between unsulfidized iron and pyrite 204 

abundances, or FePy/FeHR (Fig. 4).  When FePy/FeHR exceeds 0.8, euxinic conditions are 205 

inferred, whereas ferruginous conditions are suggested for lower ratios (Anderson and Raiswell, 206 

2004; Poulton et al., 2004b).  Note that the classification as ferruginous or euxinic does not carry 207 

implications for the absolute concentrations of Fe2+ or S2-; it simply specifies the relative 208 

abundances of the two.  That noted, most anoxic Chuar samples record a strongly ferruginous 209 

signature (FePy/FeHR << 0.8 and often near zero); however, deep-water deposits of the upper 210 

Awatubi and Walcott members contain increased pyrite contents and FePy/FeHR that, through a 211 

short interval at least, exceeds 0.8.  As such, the upper Awatubi and lower Walcott members are 212 

interpreted to reflect enhanced diagenetic pyrite formation during a short-lived episode of 213 

euxinia in the Walcott Member.  As a whole, the chemostratigraphic record of the Chuar Group 214 

suggests a basin in which anoxia was common, with predominantly ferruginous conditions 215 

interrupted transiently by euxinia.  216 

 217 

5.2. Global versus local controls on redox profile 218 
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 The redox history of the Chuar basin probably reflects both global and basinal influences, 219 

and it is important to try to distinguish between the two.  The oxygen content of the surface 220 

mixed layer (10s to 100s of meters) is a direct function of exchange and equilibration with the 221 

atmosphere, and as such, will be controlled by atmospheric PO2 and sea surface temperature. PO2 222 

is a global feature whereas temperature will vary with latitude.  Low paleolatitudes for Chuar 223 

deposition suggest warm surface waters, possibly warmer than the ~25°C of comparable modern 224 

waters, but unlikely to have been much above 40°C, given the diversity of eukaryotic organisms 225 

recorded in Chuar rocks.  In seawater, oxygen solubility is only about 20% lower at 40°C than at 226 

25°C (Sarmiento and Gruber, 2006).  Thus, by itself, high and fluctuating temperatures are 227 

unlikely to explain the repeated establishment of anoxia in shallow waters and atmospheric PO2 228 

much lower than today’s seems mandated.  229 

 The dissolved oxygen content (DO) of subsurface water masses has additional controls.  230 

Noting that density gradients strongly influence vertical exchange, the DO of deeper waters is 231 

influenced by the PO2 and temperature at the point where the water was last in contact with the 232 

atmosphere (site of water parcel formation: Sarmiento and Gruber, 2006).  Consistent with our 233 

conclusions of low atmospheric O2, we would expect bottom waters in the Chuar basin to have 234 

started with low O2 concentrations (relative to today) at their time of formation.  Additionally, 235 

however, DO reflects the downward flux of organic carbon (OC) from surface waters. Aerobic 236 

respiration of imported OC will reduce the DO pool in subsurface water masses, and if the OC 237 

flux exceeds the DO supply, anoxia will develop and organic remineralization will continue 238 

through anaerobic pathways.  Because of its high ATP yield and thermodynamic gain, aerobic 239 

respiration will be favored when oxygen is available.  In the absence of oxygen, alternative 240 

oxidants will be employed in a predictable order based on energy yield: NO3
-, then Fe3+, SO4

2-, 241 

and finally CO2 (methanogenesis).   242 

 Globally averaged, the oxygen content of the modern ocean is quite high, since today’s 243 

atmosphere contains ~20% O2.  As a result, nitrate and sulfate levels are also high, whereas iron 244 

concentrations are low.  Regionally, however, the subsurface oxygen minimum zone (OMZ) can 245 

experience extreme oxygen depletion, often associated with areas of upwelling.  As outlined 246 

above, delivery of nutrient-rich waters fuels primary production, and the ensuing export of OC to 247 

the OMZ can draw down local oxygen via aerobic respiration.  Whether oxygen-depleted waters 248 

become sulfidic or not depends on complex interactions among primary production, OC, and the 249 
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nitrogen cycle (Meyer and Kump, 2008; Canfield, 2006).  In today’s oceans, however, anoxic 250 

waters are occasionally, though not commonly sulfidic and rarely if ever ferruginous. 251 

 In contrast, during the Archean Eon, when atmospheric PO2 was exceedingly low, water 252 

masses would have been anoxic from top to bottom.  In consequence, NO3
- and SO4

2- levels must 253 

have been low, and in contrast to today, iron would have played a dominant role in ocean 254 

chemistry and the carbon cycle (e.g., Canfield, 2005; Fischer and Knoll, 2009).  Following the 255 

Great Oxidation Event at ~2.4 Ga (Holland, 1984; Farquhar et al., 2000), oxidative weathering of 256 

sulfides and greater riverine influxes of sulfate would have caused marine sulfate abundance to 257 

increase, and by ~ 1800 Ma it appears that sulfate levels had risen enough for sulfide generated 258 

during bacterial sulfate reduction to titrate out the dissolved iron load (Canfield, 1998; Poulton et 259 

al., 2004a).  Euxinia ensued, was likely common in subsurface waters (Shen et al., 2002, 2003) 260 

and may have persisted until the hypothesized Neoproterozoic return of ferruginous conditions 261 

(Canfield et al., 2008).  How do data from the Chuar Group constrain our thinking on the latter 262 

transition?  263 

 264 

5.3 The Chuar Basin Fe cycle:   265 

 The presence of both ferruginous and euxinic conditions recorded in the Chuar Group 266 

requires explanation, as the occurrence of these water chemistries is generally considered to be 267 

mutually exclusive and under the control of global fluxes operating on geological timescales.   268 

As evidence for ferruginous waters is persistent and sulfidic waters transient, we can ask two 269 

questions.  What conditions would sustain ferruginous conditions in subsurface waters? And 270 

what perturbation could push these water masses toward euxinia? 271 

 The dominance of a particular water-column chemistry must relate to the delicate balance 272 

between Fe and S in seawater (Poulton et al., 2004a; Canfield et al., 2008).  The residence times 273 

of these elements are, in part, controlled by hydrothermal fluxes and previous research suggests 274 

that the Fe:S ratio of hydrothermal effluents relates to levels of seawater sulfate (Kump and 275 

Seyfried, 2005).  In the absence of sulfate, Fe:S will be high.  Conversely, given sufficiently high 276 

sulfate, hydrothermal systems will effectively titrate out available Fe, leaving sulfur in excess.  277 

Whether because of increased reactive Fe fluxes from hydrothermal ridges (Kump and Seyfried, 278 

2005), long-term erosion of the surface S reservoir (Canfield, 2004), or both, the persistent 279 

signature of ferruginous conditions in Chuar bottom waters suggests that regionally, at least, the 280 
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chemical balance was tipped in favor of iron.  If the Chuar was indeed in contact with the open 281 

ocean, then the local sulfate concentration will be similar to that on a larger scale, and the effects 282 

of sulfate on hydrothermal Fe output in the Chuar basin may be similar to that in other locations.  283 

Further research will test this hypothesis, but Chuar data do suggest that the Neoproterozoic 284 

return of ferruginous conditions in subsurface waters began some 800 million years ago, in 285 

association with extensive rifting and well before the Sturtian ice age and its associated iron 286 

formation. In fact, our evidence for a pre-Sturtian return of iron-rich conditions helps to explain 287 

the presence of iron formation associated with Sturtian glaciogenic deposits.  288 

 Why then do upper Chuar rocks record a transient return of sulfidic bottom waters?  We 289 

cannot rule out the short-lived return of S excess regionally or globally, but given the timescales 290 

for weathering (the generation of sulfate) and volumetric flux of riverine inputs (delivery of 291 

sulfate), a punctuated increase in sulfate for at best a few million years seems unlikely. 292 

 The alternative is to explain Chuar euxinia in terms of basic biogeochemical features of 293 

the carbon cycle.  As noted above, oxidant use in respiration will follow a pattern prescribed by 294 

energy yield.  Importantly, nitrate levels were probably low in Neoproterozoic oceans (Fennel et 295 

al., 2005), so iron respiration would have kicked in as oxygen disappeared from subsurface 296 

waters.  The quantity of Fe3+ available for respiration would have been the summed flux of 1.) 297 

Fe2+ oxidized at the chemocline and shuttled to depth, 2.) physically remobilized Fe-298 

(oxy)hydroxides from shelf settings, and 3.) any background terrigenous input (Lyons and 299 

Severmann, 2006).  More broadly, this may relate back to the relative fluxes of reactive iron to 300 

sulfate into the ocean.  As Fe3+ respiration is favored thermodynamically over sulfate respiration, 301 

dissimilatory Fe reducers would have out-competed dissimilatory sulfate reducers for the initial 302 

OC load.  Sulfate reduction would be left with whatever OC remained after the exhaustion of 303 

reactive Fe3+.  In the case where ample OC remained available for sulfate reduction, bacterial 304 

sulfide production would slowly titrate out Fe2+, incrementally shifting the basin away from 305 

ferruginous conditions and toward euxinia (increasing FePy/FeT).  Consistent with this 306 

hypothesis, Chuar intervals characterized by ferruginous bottom waters have low TOC, whereas 307 

samples enriched in pyrite are associated with high TOC.  Thus, enhanced export of OC to 308 

basinal waters, perhaps driven by regional upwelling, exerted a central control on bottom water 309 

chemistry in the Chuar basin.  310 
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 In summary, then, the balance between e- acceptors and organic carbon (the most likely e- 311 

donor) exerts a second order control on water column chemistry.  As discussed above, global 312 

oxygenation and anoxia is tightly linked to PO2, which our data indicate was significantly lower 313 

than today.  On a more local scale, however, we suggest that it is the dominant mode of OC 314 

remineralization that would drive a basin or shelf environment towards ferruginous or euxinic 315 

conditions.  Thus, understanding basinal water chemistry can be reduced to tracking the 316 

biogeochemical relationships among carbon, iron and sulfur. 317 

 318 

5.4. The sulfur isotope record:  319 

 Sulfur isotope analyses of sedimentary sulfides in Chuar Group samples (Fig. 4) display a 320 

distinctive stratigraphic pattern of variability, with the lower ~ 1000m preserving a large range of 321 

isotopic compositions, while the upper 600m clusters tightly around enriched values.  In fact, our 322 

most depleted sample, a -48‰ pyrite from within the Tanner Member, stands as the most 323 

negative δ34S value yet observed in Precambrian sedimentary rocks (cf. Gorjan et al., 2000).  324 

Values this depleted are common in the second half of the Phanerozoic Eon but rare in older 325 

rocks (including the remainder of the Chuar sulfides).   A majority of the sulfate-pyrite pairs 326 

extracted from carbonate beds in the lower ~1000m of the Chuar Group suggests a Δ34S 327 

(δ34Ssulfate- δ34Ssulfide) of ~ 25‰, and the complementary pyrite record (extracted from shale) is 328 

consistent with this result.  This magnitude of fractionation is characteristic for Neoproterozoic 329 

deposits (Hurtgen et al., 2005; Fike et al., 2006).  Though not immediately obvious, however, 330 

this may suggest an unconventional relationship between isotopic fractionation and sulfate 331 

concentrations. 332 

 Conventionally, ferruginous conditions are thought to require low concentrations of 333 

seawater sulfate, as suggested, for instance, for Archean oceans (Habicht et al., 2002).  It has also 334 

been proposed that in order to produce larger isotopic fractionations from seawater sulfate, such 335 

as the 25‰ measured here, seawater sulfate must be reasonably high (that is, at mM levels).  336 

This latter relationship has been used to argue that the apparent increase in the range of δ34S 337 

fractionations at the Archean-Proterozoic boundary and, again, in the terminal Neoproterozoic 338 

mark increases in seawater sulfate concentrations (Canfield and Teske, 1996).  If both 339 

observations are correct, lower Chuar rocks may present slightly contradicting pieces of 340 

conventional wisdom -- ferruginous conditions accompanied by larger (not Archean-like) 341 
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isotopic fractionations. Upon closer investigation, however, there is no strict a priori reason to 342 

presume that ferruginous conditions require vanishingly low sulfate concentrations.   343 

 The overarching connection between ferruginous condition and seawater sulfate is more 344 

literally a relationship between iron and sulfide, which has its own set of controls involving 345 

organic carbon.  Given at least moderate concentrations of seawater sulfate, such as the ~ 2-5 346 

mM suggested for middle Proterozoic environments (c.f. Shen et al., 2002) an alternative means 347 

of generating large δ34S effects is through slow rates of sulfate reduction (for instance, Kaplan 348 

and Rittenberg, 1964).  This prediction is consistent with the postulated Chuar basin depositional 349 

environment.  Low rates of sulfate reduction mean low rates of sulfide generation, allowing a 350 

ferruginous water column to remain as a dominant feature of ocean basins.  Complementing this, 351 

the limited fractionation observed for upper Chuar shale would reflect higher rates of sulfate 352 

reduction, and/or quantitative reduction of pore-water (or water column) sulfate.   In this way, 353 

sulfate levels could have been low enough to favor Fe emission from hydrothermal ridges, but 354 

high enough to account for the observed range of fractionations. 355 

 356 

5.5. Unifying biogeochemical principles:   357 

 It may, in fact, be the relative fluxes of reactive Fe, sulfate sulfur, and organic carbon to 358 

any given environment that exerts control on how the local biogeochemistry develops.  Put 359 

differently, the chemical evolution of an environment will be related to the fluxes of electron 360 

acceptors (O2, NO3
-, Fe3+, SO4

2-) and electron donors (organic carbon) available to heterotrophic 361 

organisms.  Although directly linked to fluxes to the ocean, for a microorganism it would be the 362 

concentration of the species of interest at any given point; specifically within their 363 

microenvironment.  Given a choice of electron acceptor, there is a well-defined, 364 

thermodynamically derived order in which microorganisms will use a specific oxidant (Froelich 365 

et al., 1979; Berner, 1980; Stumm and Morgan, 1981; Amend and Shock, 2001).  Oxygen is the 366 

most favorable e- acceptor, followed by NO3
-, Fe3+, and SO4

2- (see Canfield et al., 2005; 367 

Konhauser, 2007).  Given our data suggesting relatively low PO2 and similarly low levels of 368 

nitrate (Fennel et al., 2005), ferric iron and sulfate would be the prominent oxidants.   369 

We understand the stoichiometric relationships between iron, sulfur and organic carbon 370 

in terms of dissimilatory microbial transformations (Canfield et al., 2005; Konhauser, 2007). In 371 

what follows we present a series of inequalities in terms that relate OC, Fe3+ and SO4
2- in anoxic, 372 
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nitrate poor environments. To begin, we adopt the stoichiometry of ferrihydrite reduction, where 373 

4 moles of Fe3+ are reduced per mole of carbon (Konhauser, 2007).  This means that the maximal 374 

amount of OC remineralized by Fe3+ (in moles C) is equal to ¼ the flux of Fe3+ to that 375 

environment (or ¼[Fe3+]influx). Thus,   376 

if ,  377 

then there should not be any additional electrons available, which given our example, would 378 

have gone towards sulfate reduction (Canfield, 1998; Canfield et al., 2008).  This would result in 379 

a Fe2+ excess over sulfide; a ferruginous condition.  Alternatively,  380 

if ,  381 

then there should be electrons available for sulfate reduction.  The amount of OC available to 382 

sulfate reducers after iron respiration is effectively [OC]flux-in – ¼[Fe3+]flux-in. For an environment 383 

to become euxinic and titrate out all the iron as pyrite, however, the amount of sulfide produced 384 

must exceed twice the Fe2+ produced, or 2[Fe3+]influx.  Unlike iron respiration, sulfate reduction 385 

remineralizes 2 moles of OC per mole sulfate.  Thus, when put in terms of moles OC, for sulfide 386 

production to exceed twice Fe2+ production (to satisfy pyrite formation) would require 16 times 387 

more OC be remineralized via sulfate reduction than iron reduction.  For instance, if 1 mole of 388 

OC consumes all the Fe3+ (which here would be 4 moles Fe3+), 16 additional moles (or 17 total 389 

moles OC) will be necessary to produce adequate sulfide to drive euxinia.   Placed back in terms 390 

of measurable fluxes, euxinia then requires the influx of OC exceed 41/4 times the flux of Fe3+ to 391 

the environment (17 moles OC per 4 moles Fe).  392 

From the above relationships we conclude that for sulfide to be the dominant reduced 393 

species, there must be enough available OC to consume all the Fe3+ and produce the quantity of 394 

sulfide necessary to overwhelm the standing Fe2+ pool.  In examining the modern marine system, 395 

we find that influxes of FeHR and S to the ocean are of the same order of magnitude (1012 396 

mol/yr; Raiswell et al., 2006; Turchyn and Schrag, 2004, respectively), perhaps even favoring 397 

iron.  The sedimentary remineralization of OC has also been estimated (1014 mol C/yr: Canfield, 398 

1993), and in comparing these fluxes in the context of the inequalities proposed above, it is 399 

easier to understand why we observe euxinia accompanying oxygen deficient settings rather than 400 

ferruginous waters ([OC]flux-in >> Fe3+
flux-in).  For ferruginous conditions to prevail in the 401 
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Neoproterozoic would then require primary production be much lower, FeHR inputs (perhaps 402 

associated with hydrothermal activity) must have been much greater, or both.  As the 403 

establishment of euxinia also requires S in excess of Fe, we reassert that net Fe:S ratios of inputs 404 

to the ocean will carry an important control.  Overall, these predictions about the interplay 405 

between C, S and Fe extend well beyond studies of Neoproterozoic ocean chemistry.  For 406 

instance, similar arguments could explain the transient development of sulfidic water masses in 407 

the latest Archean Mount McRae Shale, given available sulfate (Reinhard et al., 2009).   408 

Moving beyond assaying the balance of euxinia and ferruginous conditions, we can 409 

extend this approach to develop isotopic tests of various relationships between OC and sulfate.  410 

Here, these inequalities pertain to the specific behavior of sulfate reduction.  We begin with the 411 

condition:  412 

if ,  413 

where the denominator represents the stoichiometric amount of carbon required to reduce sulfate 414 

and the environment is net sulfate limiting. In this case, and where OC is readily available, 415 

sulfate reduction rates should be high until the sulfate reservoir is exhausted.  High rates of 416 

reduction generally lead to low δ34S fractionations.  Similarly, if sulfate is limited, environments 417 

tend to record the quantitative reduction of seawater sulfate, the result of which is enriched δ34S 418 

values.  These two scenarios are likely indistinguishable in the rock record, but fortunately stem 419 

from the same initial condition - sulfate limitation.  Alternatively, 420 

if ,  421 

then the environment is net electron limited.  Under conditions where organic carbon is not as 422 

readily available (and possibly exhausted), sulfate reduction rates would be lower and 423 

fractionation would increase. 424 

 425 

5.6. Implications for paleobiology 426 

 Like geochemical proxies, fossils in Chuar rocks probably reflect both basinal and global 427 

influences.  Lower Chuar strata preserve diverse microfossils of probable eukaryotic origin 428 

(Vidal and Ford, 1986; Nagy et al., 2009), but similar fossils are uncommon in upper Chuar 429 

strata (Nagy et al., 2009).  Evidence for persistent bottom-water anoxia throughout the Chuar 430 
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strata suggests that whatever the affinity of these fossilized organisms, they were likely 431 

planktonic in nature.  The stratigraphic distribution of Chuar fossils has been interpreted to 432 

reflect a eutrophic event (Nagy et al., 2009) that correlates with observed increases in TOC, an 433 

enrichment in the δ13C of organic carbon  (Dehler et al., 2005) and the onset of euxinia (this 434 

study).  The marked transition from ferruginous to euxinic conditions in the upper Chuar Group 435 

also corresponds to two organic geochemical changes: a drop in the sterane to hopane ratio, 436 

suggesting an increase in the proportional importance of prokaryotic primary producers and a 437 

corresponding increase in C27 relative to C28 and C29 steranes (Ventura et al., 2005), suggesting a 438 

shift in algal populations from predominantly green to red algae.   Some red algae (for example 439 

Cyanidium) can perform anaerobic fermentation under oxygen stress whereas the same capacity 440 

has not been observed in green algae (Lafraie and Betz, 1985), potentially allowing reds to 441 

persist opportunistically in the upper Chuar waters.  However, given the requirement that they 442 

produce enough overall biomass to influence sterane distributions, red algae in the upper Chuar 443 

basin probably lived predominantly as primary producers. Upper Chuar dolomite nodules also 444 

preserve a remarkable diversity of vase-shaped fossils interpreted as the tests of filose and lobose 445 

testate amoebae, organisms that flourish today in organic-rich environments (Porter and Knoll, 446 

2000; Porter et al., 2003). 447 

 Sulfide tolerance provides a possible means of explaining the stratigraphic concordance 448 

of paleobiological and geochemical data.  Sulfide is known to bind with cytochrome c oxidase, 449 

the terminal electron acceptor in the mitochondrial e- transport chain, thus inhibiting aerobic 450 

respiration (Nicholls and Kim, 1982).  Further, sulfide has been shown to interfere with ATP 451 

production in animals (Bagarinao, 1992) and to obstruct other key enzymes, such as carbonic 452 

anhydrase (Coleman, 1967).  Many cyanobacteria are sulfide tolerant (Cohen et al., 1986; 453 

Manske et al., 2005; also see Johnston et al., 2009), consistent with the observed distribution of 454 

body and molecular fossils.   Moreover, within this overall pattern, the increased abundances of 455 

red versus green algae may speak directly to the higher Fe-requirement of greens (Quigg et al., 456 

2003).  If we are correct in that organic carbon delivery (put differently, the availability of 457 

electrons) stimulated the transition from ferruginous to euxinic, then it may in fact be local 458 

nutrient availability that controlled the system.  459 

Just as the basinal transition from ferrgunious to sulfidic bottom waters favored 460 

prokaryotic primary producers in the Chuar seaway, broader Neoproterozoic transition from 461 
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widespread subsurface euxinia to ferruginous water masses may have favored eukaryotic 462 

expansion. A number of later Neoproterozoic successions record increased eukaryotic diversity 463 

beginning ~800 Ma.  Rocks of this age contain the earliest known protistan tests (Porter and 464 

Knoll, 2000; Porter et al., 2003) and scales (Allison and Hilgert, 1986; fossiliferous strata now 465 

known to be ca. 820-780 Ma, MacDonald et al., accepted), and in well-characterized fossil 466 

assemblages, nearly 85% of described eukaryotes have no record in older rocks (Allison and 467 

Hilgert, 1986; Butterfield et al., 1994; Porter et al., 2003; Butterfield, 2005; see Knoll et al, 2006, 468 

for discussion of possible taphonomic influences). Finally, the oldest shale known to contain 469 

abundant steranes is, in fact, from the Chuar Group (Ventura et al. 2005), and certain molecular 470 

clocks for animal, fungal and charophyte green algal diversification suggest that these clades 471 

originated in the same time frame (Peterson et al., 2008; Lucking et al., 2009).   472 

 Martin et al. (2003) proposed that widespread sulfide in the subsurface of mid-473 

Proterozoic oceans would have inhibited early eukaryotic diversification.  Thus, if global, the 474 

shift from predominantly euxinic to ferruginous subsurface waters in the Neoproterozoic might 475 

have removed a barrier to eukaryotic radiation.  That is, Neoproterozoic eukaryotic 476 

diversification may owe as much to changing conditions in subsurface waters as it does to 477 

increasing PO2 in the atmosphere and surface waters.  This hypothesis can be tested by detailed 478 

experimentation with eukaryotic organisms and geochemical analyses of other fossiliferous 479 

Neoproterozoic basins.   480 

 481 

6.0 Conclusion 482 

 A majority of the Chuar Group strata records a geochemical setting perhaps unique until 483 

this point in history: Archean-like ferruginous conditions accompanied by appreciable levels of 484 

seawater sulfate. It is difficult to extrapolate with confidence from the interplay between 485 

ferruginous and euxinic conditions within the Chuar basin to the character of the global ocean, 486 

and continued work in contemporaneous basins will test our hypotheses.  However, these data 487 

suggest that the controls on regional ocean chemistry reflected both global (low atmospheric PO2) 488 

and basinal conditions, especially OC export from the surface ocean and the supplies of electron 489 

acceptors for anaerobic remineralization.  The driving force of OC export puts in place a 490 

prediction:  low OC environments should favor ferruginous conditions whereas higher OC export 491 

will push the system towards euxinia. More specifically, and after the first-order control of PO2, 492 
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we propose a quantitative relationship between the fluxes of reactive iron, sulfate, and organic 493 

carbon to seafloor environments that will poise the system.  With sulfate and iron available, 494 

responsibility then falls to OC export to adjudicate the fate of anoxic ocean chemistry. 495 

Where ferric iron pools were exhausted in the Chuar basin and sulfate reduction ensued, 496 

rates of sulfide production were probably low, as was the fraction of sulfide re-oxidized (high fpy 497 

values; see Canfield, 2004).  This would effectively reduce the likelihood of accumulating, even 498 

transiently, sulfur intermediate species that could be further oxidized, reduced, or 499 

disproportionated.  Complicated by the lack of other prominent sulfur utilizing microbial 500 

processes, a δ34S value of roughly -50‰ is challenging to explain, especially when CAS data 501 

from the same member indicate that the δ34S of seawater sulfate lay between 5 and 20‰ (or a 502 

Δ34S between 55-70‰).  As such a Δ34S exceeds conventional understanding of maximum 503 

fractionation associated with sulfate reduction (Harrison and Thode, 1958), continued research 504 

on the specific isotopic capability of sulfate reducing bacteria is needed (for instance, see 505 

Johnston et al., 2007).  We leave open the possibility that the observed fractionations are 506 

primarily recording the activity of sulfate reducing bacteria. 507 

In general, Chuar data contribute to an emerging picture of the Neoproterozoic Earth as a 508 

world in flux.  Geochemical data from the Chuar Group support the hypothesis that a return to 509 

ferruginous chemistry in subsurface waters long predated the Ediacaran transition to more fully 510 

oxygenated oceans (Canfield et al., 2008).  In fact, evidence for pre-Sturtian iron-rich conditions 511 

also helps resolve questions surrounding the resurgence of iron formation in Sturtian glacial 512 

deposits.  Indeed, our data suggest that this return began some 800 million years ago, more or 513 

less coincident with paleogeographic (Kirschvink, 1992) and Sr-isotopic data (Veizer and 514 

Compston, 1976; Asmerom et al., 1991; Halverson et al., 2007) that indicate widespread rifting 515 

of the Rodinian supercontinent.  Increases in rift-related sediment burial throughout the 516 

Cryogenian and a potentially increased contribution from oxygenic photosynthesis to primary 517 

production during this time (Johnston et al., 2009), may also help to explain the variability in 518 

δ13C records and why this period was so vulnerable to climatic perturbations. Thus, tectonics, 519 

climatic change, redox transition and biological evolution may well be intricately interwoven 520 

strands of the dynamic Neoproterozoic Earth system (e.g., Knoll, 1992). The extent to which 521 

Chuar strata faithfully and fully represent the global ocean is unclear, but hypotheses inspired by 522 

Chuar data are testable with geochemical reconstructions targeting contemporaneous strata. 523 
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 533 

Figure 1:  A geological map showing outcrop distribution of the Chuar Group, modified from 534 

Porter and Knoll (2000), where G. C. SGp. notes the Grand Canyon Supergroup. 535 

 536 

Figure 2: Integrated stratigraphy is modified from Dehler et al. (2005), whereas interpretations 537 

of paleowater depth are adopted from Dehler et al.(2001).   The Sixtymile Formation is noted as 538 

“S.m. Fm.”, the Nankoweap Formation is noted as “Nan. Fm.”, the Duppa member is noted as 539 

“Dup.”, and the Carbon Butte member is noted as “C.B.”. The age constraint at the top of the 540 

composite section is from Karlstrom et al.(2000).  Samples analyzed here are the same as 541 

presented in those previous studies.  Composite stratigraphy with carbon isotope compositions 542 

(δ13C) of organic matter and carbonate, as well as total organic carbon contents (TOC) are from 543 

Dehler, (2001) and Dehler et al. (2005).  544 

 545 
Figure 3: Composite stratigraphy with new iron speciation data from this study.  From left to 546 

right, we list total Fe content (in weight %), and the relative proportion of Fe residing in 547 

siliciclastic and non-siliciclastic phases (unreactive and reactive phases), reduced phases, mixed 548 

valence phases, and oxidized phases.  Extraction methods are described in the text.  Most 549 

relevant to the questions of interest are the highly reactive Fe fraction (FeHR/FeT) and the 550 

reduced Fe phase, within which the reactive Fe pool resides (FeCarb or FePy). 551 

 552 

Figure 4: Composite stratigraphy listing sulfur isotope data and Fe relationships that provide 553 

information about paleo-redox and water column chemistry.  The FeHR/FeT is a measure of 554 

oxygenation, where values > 0.38 suggests anoxia (solid black line).  Also listed is the modern 555 

average (dashed gray line).  Samples are colored to represent anoxic settings (black), oxic 556 

settings (light gray), and values where a more conservative, equivocal interpretation is applied 557 
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(white).  The center frame lists values of FePy/FeHR, which represents the fraction of Fe2+ 558 

bound as sulfide, and where values > 0.80 suggest euxinia (anoxic and sulfide containing), and 559 

are represented in black.  White data that fall below the 0.80 threshold suggest ferruginous 560 

conditions.  The right-hand frame records the δ34S values of sulfides (circles) and sulfate 561 

(diamonds) samples.  Sedimentary sulfide extracted from shale are listed in black, whereas 562 

sulfide extracted along with CAS (the sulfate presented) are listed in white.  Finally, the 563 

fractionation between sulfate and sulfide, Δ34S, is listed to the right.  564 

 565 

 566 

567 
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