48 research outputs found

    Genome Engineering Technology for Durable Disease Resistance: Recent Progress and Future Outlooks for Sustainable Agriculture

    Get PDF
    Crop production worldwide is under pressure from multiple factors, including reductions in available arable land and sources of water, along with the emergence of new pathogens and development of resistance in pre-existing pathogens. In addition, the ever-growing world population has increased the demand for food, which is predicted to increase by more than 100% by 2050. To meet these needs, different techniques have been deployed to produce new cultivars with novel heritable mutations. Although traditional breeding continues to play a vital role in crop improvement, it typically involves long and laborious artificial planting over multiple generations. Recently, the application of innovative genome engineering techniques, particularly CRISPR-Cas9-based systems, has opened up new avenues that offer the prospects of sustainable farming in the modern agricultural industry. In addition, the emergence of novel editing systems has enabled the development of transgene-free non-genetically modified plants, which represent a suitable option for improving desired traits in a range of crop plants. To date, a number of disease-resistant crops have been produced using gene-editing tools, which can make a significant contribution to overcoming disease-related problems. Not only does this directly minimize yield losses but also reduces the reliance on pesticide application, thereby enhancing crop productivity that can meet the globally increasing demand for food. In this review, we describe recent progress in genome engineering techniques, particularly CRISPR-Cas9 systems, in development of disease-resistant crop plants. In addition, we describe the role of CRISPR-Cas9-mediated genome editing in sustainable agriculture

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    A Theorem Proving Approach For Automatically Synthesizing Visualizations Of Flow Cytometry Data

    No full text
    Background: Polychromatic flow cytometry is a popular technique that has wide usage in the medical sciences, especially for studying phenotypic properties of cells. The high-dimensionality of data generated by flow cytometry usually makes it difficult to visualize. The naive solution of simply plotting two-dimensional graphs for every combination of observables becomes impractical as the number of dimensions increases. A natural solution is to project the data from the original high dimensional space to a lower dimensional space while approximately preserving the overall relationship between the data points. The expert can then easily visualize and analyze this low-dimensional embedding of the original dataset. Results: This paper describes a new method, SANJAY, for visualizing high-dimensional flow cytometry datasets. This technique uses a decision procedure to automatically synthesize two-dimensional and three-dimensional projections of the original high-dimensional data while trying to minimize distortion. We compare SANJAY to the popular multidimensional scaling (MDS) approach for visualization of small data sets drawn from a representative set of benchmarks, and our experiments show that SANJAY produces distortions that are 1.44 to 4.15 times smaller than those caused due to MDS. Our experimental results show that SANJAY also outperforms the Random Projections technique in terms of the distortions in the projections. Conclusions: We describe a new algorithmic technique that uses a symbolic decision procedure to automatically synthesize low-dimensional projections of flow cytometry data that typically have a high number of dimensions. Our algorithm is the first application, to our knowledge, of using automated theorem proving for automatically generating highly-accurate, low-dimensional visualizations of high-dimensional data

    Power Efficient Gurumukhi Unicode Reader Design and Implementation on FPGA

    No full text

    On Mitigating the Effects of Multipath on GNSS Using Environmental Context Detection

    No full text
    Accurate, ubiquitous and reliable navigation can make transportation systems (road, rail, air and marine) more efficient, safer and more sustainable by enabling path planning, route optimization and fuel economy optimization. However, accurate navigation in urban contexts has always been a challenging task due to significant chances of signal blockage and multipath and non-line-of-sight (NLOS) signal reception. This paper presents a detailed study on environmental context detection using GNSS signals and its utilization in mitigating multipath effects by devising a context-aware navigation (CAN) algorithm that detects and characterizes the working environment of a GNSS receiver and applies the desired mitigation strategy accordingly. The CAN algorithm utilizes GNSS measurement variables to categorize the environment into standard, degraded and highly degraded classes and then updates the receiver’s tracking-loop parameters based on the inferred environment. This allows the receiver to adaptively mitigate the effects of multipath/NLOS, which inherently depend upon the type of environment. To validate the functionality and potential of the proposed CAN algorithm, a detailed study on the performance of a multi-GNSS receiver in the quad-constellation mode, i.e., GPS, BeiDou, Galileo and GLONASS, is conducted in this research by traversing an instrumented vehicle around an urban city and acquiring respective GNSS signals in different environments. The performance of a CAN-enabled GNSS receiver is compared with a standard receiver using fundamental quality indicators of GNSS. The experimental results show that the proposed CAN algorithm is a good contributor for improving GNSS performance by anticipating the potential degradation and initiating an adaptive mitigation strategy. The CAN-enabled GNSS receiver achieved a lane-level accuracy of less than 2 m for 53% of the total experimental time-slot in a highly degraded environment, which was previously only 32% when not using the proposed CAN

    A theorem proving approach for automatically synthesizing visualizations of flow cytometry data

    No full text
    Abstract Background Polychromatic flow cytometry is a popular technique that has wide usage in the medical sciences, especially for studying phenotypic properties of cells. The high-dimensionality of data generated by flow cytometry usually makes it difficult to visualize. The naive solution of simply plotting two-dimensional graphs for every combination of observables becomes impractical as the number of dimensions increases. A natural solution is to project the data from the original high dimensional space to a lower dimensional space while approximately preserving the overall relationship between the data points. The expert can then easily visualize and analyze this low-dimensional embedding of the original dataset. Results This paper describes a new method, SANJAY, for visualizing high-dimensional flow cytometry datasets. This technique uses a decision procedure to automatically synthesize two-dimensional and three-dimensional projections of the original high-dimensional data while trying to minimize distortion. We compare SANJAY to the popular multidimensional scaling (MDS) approach for visualization of small data sets drawn from a representative set of benchmarks, and our experiments show that SANJAY produces distortions that are 1.44 to 4.15 times smaller than those caused due to MDS. Our experimental results show that SANJAY also outperforms the Random Projections technique in terms of the distortions in the projections. Conclusions We describe a new algorithmic technique that uses a symbolic decision procedure to automatically synthesize low-dimensional projections of flow cytometry data that typically have a high number of dimensions. Our algorithm is the first application, to our knowledge, of using automated theorem proving for automatically generating highly-accurate, low-dimensional visualizations of high-dimensional data

    Novel Protection Coordination Scheme for Active Distribution Networks

    No full text
    Distribution networks are inherently radial and passive owing to the ease of operation and unidirectional power flow. Proper installation of Distributed Generators, on the one hand, makes the utility network active and mitigates certain power quality issues e.g., voltage dips, frequency deviations, losses, etc., but on the other hand, it disturbs the optimal coordination among existing protection devices e.g., over-current relays. In order to maintain the desired selectivity level, such that the primary and backup relays are synchronized against different contingencies, it necessitates design of intelligent and promising protection schemes to distinguish between the upstream and downstream power flows. This research proposes exploiting phase angle jump, an overlooked voltage sag parameter, to add directional element to digital over-current relays with inverse time characteristics. The decision on the direction of current is made on the basis of polarity of phase angle jump together with the impedance angle of the system. The proposed scheme at first is evaluated on a test system in a simulated environment under symmetrical and unsymmetrical faults and, secondly, as a proof of the concept, it is verified in real-time on a laboratory setup using a Power Hardware-in-loop (PHIL) system. Moreover, a comparative analysis is made with other state-of-the-art techniques to evaluate the performance and robustness of the proposed approach
    corecore