26 research outputs found

    Lymph node-derived donor encephalitogenic CD4+ T cells in C57BL/6 mice adoptive transfer experimental autoimmune encephalomyelitis highly express GM-CSF and T-bet

    Get PDF
    Experimental autoimmune encephalomyelitis (EAE) is a relevant animal model for the human demyelinating inflammatory disorder of the central nervous system (CNS), multiple sclerosis (MS). Induction of EAE by adoptive transfer allows studying the role of the donor T lymphocyte in disease pathogenesis. It has been challenging to reliably induce adoptive transfer EAE in C57BL/6 (H-2b) mice. The goal of this study was to develop a reproducible and high yield protocol for adoptive transfer EAE in C57BL/6 mice. A step-wise experimental approach permitted us to develop a protocol that resulted in a consistent relatively high disease incidence of ~70% in recipient mice. Donor mice were immunized with myelin oligodendrocyte glycoprotein (MOG)p35-55 in complete Freund's adjuvant (CFA) followed by pertussis toxin (PT). Only lymph node cells (LNC) isolated at day 12 post immunization, and restimulated in vitro for 72 hours with 10 μg/mL of MOGp35-55 and 0.5 ng/mL of interleukin-12 (IL-12) were able to transfer disease. The ability of LNC to transfer disease was associated with the presence of inflammatory infiltrates in the CNS at day 12. Interferon gamma (IFNγ) was produced at comparable levels in cell cultures prepared from mice at both day 6 and day 12 post immunization. By contrast, there was a trend towards a negative association between IL-17 and disease susceptibility in our EAE model. The amount of GM-CSF secreted was significantly increased in the culture supernatants from cells collected at day 12 post immunization versus those collected at day 6 post-immunization. Activated CD4+ T cells present in the day 12 LNC cultures maintained expression of the transcription factor T-bet, which has been shown to regulate the expression of the IL-23 receptor. Also, there was an increased prevalence of MOGp35-55-specific CD4+ T cells in day 12 LNC after in vitro re-stimulation. In summary, encephalitogenic LNC that adoptively transfer EAE in C57BL/6 mice were not characterized by a single biomarker in our study, but by a composite of inflammatory markers. Our data further suggest that GM-CSF expression by CD4+ T cells regulated by IL-23 contributes to their encephalitogenicity in our EAE model

    Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling

    Get PDF
    The primary biological function of the endogenous cellular prion protein has remained unclear. We investigated its biological function in the generation of cellular immune responses using cellular prion protein gene-specific small interfering ribonucleic acid in vivo and in vitro. Our results were confirmed by blocking cellular prion protein with monovalent antibodies and by using cellular prion protein-deficient and -transgenic mice. In vivo prion protein gene-small interfering ribonucleic acid treatment effects were of limited duration, restricted to secondary lymphoid organs and resulted in a 70% reduction of cellular prion protein expression in leukocytes. Disruption of cellular prion protein signalling augmented antigen-specific activation and proliferation, and enhanced T cell receptor signalling, resulting in zeta-chain-associated protein-70 phosphorylation and nuclear factor of activated T cells/activator protein 1 transcriptional activity. In vivo prion protein gene-small interfering ribonucleic acid treatment promoted T cell differentiation towards pro-inflammatory phenotypes and increased survival of antigen-specific T cells. Cellular prion protein silencing with small interfering ribonucleic acid also resulted in the worsening of actively induced and adoptively transferred experimental autoimmune encephalomyelitis. Finally, treatment of myelin basic protein1–11 T cell receptor transgenic mice with prion protein gene-small interfering ribonucleic acid resulted in spontaneous experimental autoimmune encephalomyelitis. Thus, central nervous system autoimmune disease was modulated at all stages of disease: the generation of the T cell effector response, the elicitation of T effector function and the perpetuation of cellular immune responses. Our findings indicate that cellular prion protein regulates T cell receptor-mediated T cell activation, differentiation and survival. Defects in autoimmunity are restricted to the immune system and not the central nervous system. Our data identify cellular prion protein as a regulator of cellular immunological homoeostasis and suggest cellular prion protein as a novel potential target for therapeutic immunomodulation

    Clinical trials in multiple sclerosis: past, present, and future

    Get PDF
    For the past four decades, multiple sclerosis (MS) has been a focus for clinical trial development and execution. Advances in translational neuroimmunology have led to the development of effective disease-modifying therapies (DMTs) that greatly benefit patients with MS and mitigate their burden of disease. These achievements also stem from continued progress made in the definition and discovery of sensitive disease diagnostic criteria, objective disability assessment scales, precise imaging techniques, and disease-specific biomarkers. As a result, our knowledge of MS pathophysiology is more mature; the established clinical practice for the diagnosis and management of MS could serve as a roadmap to guide the development of more disease-specific interventions. In this article we briefly review the main achievements in the evolution of clinical trials for MS, and discuss opportunities for improvements

    Expression of the tyrosine phosphatase Src homology 2 domain-containing protein tyrosine phosphatase 1 determines T cell activation threshold and severity of experimental autoimmune encephalomyelitis

    No full text
    Experimental autoimmune encephalomyelitis (EAE) is a CD4 Th1-mediated inflammatory demyelinating disorder of the CNS and a well-established animal model for multiple sclerosis. Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) is a cytosolic tyrosine phosphatase that is involved in regulating the T cell activation cascade from signals initiated through the TCR. To study the role of SHP-1 in EAE pathogenesis, we immunized B10.PL mice heterozygous for deletion of the SHP-1 gene (mev+/-) and B10.PL wild-type mice with the immunodominant epitope of myelin basic protein (MBP Ac1-11). T cell proliferation and IFN-γ production were significantly increased in mev+/- mice after immunization with MBP Ac1-11. The frequency of MBP Ac1-11-specific CD4 T cells, analyzed by staining with fluorescently labeled tetramers (MBP1-11[4Y]: I-Au complexes), was increased in the draining lymph node cells of mev+/- mice compared with wild-type mice. In addition, mev+/- mice developed a more severe course of EAE with epitope spreading to proteolipid protein peptide 43-64. Finally, expansion of MBP Ac1-11-specific T cells in response to Ag was enhanced in mev+/- T cells, particularly at lower Ag concentrations. These data demonstrate that the level of SHP-1 plays an important role in regulating the activation threshold of autoreactive T cells.</p

    Clinical trials in multiple sclerosis: potential future trial designs

    Get PDF
    Clinical trials of new treatments in multiple sclerosis (MS) currently require large sample sizes and long durations in order to yield reliable results. The differential responses of an already heterogeneous population of MS patients to individual disease-modifying therapies (DMTs) will further complicate future trials. MS trials with smaller samples and faster outcomes are conceivable through the substitution of current clinical and MRI outcomes with objectively measureable genomic and proteomic biomarkers. Currently, biomarkers that could be utilized for diagnosis and monitoring of MS disease activity are in the early validation phase. The power of single biomarkers or multiple correlated biomarkers to predict prognosis and response to treatment could initially be compared with currently accepted methods. These prospectively validated disease biomarkers could then be used to subcategorize the spectrum of MS patients into a finite number of endophenotypes with demonstrable different molecular pathogeneses and DMT response profiles. Newly developed DMT could potentially be assessed within specific endophenotypes and compared with pharmacogenomically relevant active comparator DMT. This approach may increase the efficiency of MS trials through homogenization of patient population and minimization of nonresponders in study groups, providing the potential for the development of targeted therapies

    Silencing T-bet Defines a Critical Role in the Differentiation of Autoreactive T Lymphocytes

    Get PDF
    AbstractAs a means of developing therapies that target the pathogenic T cells in multiple sclerosis (MS) without compromising the immune system or eliciting systemic side effects, we investigated the use of T-bet-specific antisense oligonucleotides and small interfering RNAs (siRNA) to silence T-bet expression in autoreactive encephalitogenic T cells and evaluated the biological consequences of this suppression in experimental autoimmune encephalomyelitis, a model for MS. The T-bet-specific AS oligonucleotide and siRNA suppressed T-bet expression, IFNγ production, and STAT1 levels during antigen-specific T cell differentiation. In vitro suppression of T-bet during differentiation of myelin-specific T cells and in vivo administration of a T-bet-specific antisense oligonucleotide or siRNA inhibited disease. T-bet was shown to bind the IFNγ and STAT1 promoters, but did not regulate the IL-12/STAT4 pathway. Since T-bet regulates IFNγ production in CD4+ T cells, but to a lesser extent in most other IFNγ-producing cells, T-bet may be a target for therapeutics for Th1-mediated diseases
    corecore