14 research outputs found

    Determining the potential scalability of transport interventions for improving maternal, child, and newborn health in Pakistan

    Get PDF
    Background: Pakistan is far behind in achieving the Millennium Development Goals regarding the reduction of child and maternal mortality. Amongst other factors, transport barriers make the requisite obstetric care inaccessible for women during pregnancy and at birth, when complications may become life threatening for mother and child. The significance of efficient transport in maternal and neonatal health calls for identifying which currently implemented transport interventions have potential for scalability. Methods: A qualitative appraisal of data and information about selected transport interventions generated primarily by beneficiaries, coordinators, and heads of organizations working with maternal, child, and newborn health programs was conducted against the CORRECT criteria of Credibility, Observability, Relevance, Relative Advantage, Easy-Transferability, Compatibility and Testability. Qualitative comparative analysis (QCA) techniques were used to analyse seven interventions against operational indicators. Logical inference was drawn to assess the implications of each intervention. QCA was used to determine simplifying and complicating factors to measure potential for scaling up of the selected transport intervention. Results: Despite challenges like deficient in-journey care and need for greater community involvement, community-based ambulance services were managed with the support of the community and had a relatively simple model, and therefore had high scalability potential. Other interventions, including facility-based services, public-sector emergency services, and transport voucher schemes, had limitations of governance, long-term sustainability, large capital expenditures, and need for management agencies that adversely affected their scalability potential. Conclusion: To reduce maternal and child morbidity and mortality and increase accessibility of health facilities, it is important to build effective referral linkages through efficient transport systems. Effective linkages between community-based models, facility-based models, and public sector emergency services should be established to provide comprehensive coverage. Voucher scheme integrated with community-based services may bring improvements in service utilization

    S-nitrosocysteamine-functionalised porous graphene oxide nanosheets as nitric oxide delivery vehicles for cardiovascular applications

    Get PDF
    Nitric oxide (NO) is a key signalling molecule released by vascular endothelial cells that is essential for vascular health. Low NO bioactivity is associated with cardiovascular diseases, such as hypertension, atherosclerosis, and heart failure and NO donors are a mainstay of drug treatment. However, many NO donors are associated with the development of tolerance and adverse effects, so new formulations for controlled and targeted release of NO would be advantageous. Herein, we describe the design and characterisation of a novel NO delivery system via the reaction of acidified sodium nitrite with thiol groups that had been introduced by cysteamine conjugation to porous graphene oxide nanosheets, thereby generating S-nitrosated nanosheets. An NO electrode, ozone-based chemiluminescence and electron paramagnetic resonance spectroscopy were used to measure NO released from various graphene formulations, which was sustained at >5 × 10  mol cm min for at least 3 h, compared with healthy endothelium (cf. 0.5-4 × 10  mol cm min ). Single cell Raman micro-spectroscopy showed that vascular endothelial and smooth muscle cells (SMCs) took up graphene nanostructures, with intracellular NO release detected via a fluorescent NO-specific probe. Functionalised graphene had a dose-dependent effect to promote proliferation in endothelial cells and to inhibit growth in SMCs, which was associated with cGMP release indicating intracellular activation of canonical NO signalling. Chemiluminescence detected negligible production of toxic N-nitrosamines. Our findings demonstrate the utility of porous graphene oxide as a NO delivery vehicle to release physiologically relevant amounts of NO in vitro, thereby highlighting the potential of these formulations as a strategy for the treatment of cardiovascular diseases

    Seroprevalence of Mycoplasma gallisepticum Among Commercial Layers in Faisalabad, Pakistan

    No full text
    Mycoplamosis is one of the most important health hazards being faced by the poultry industry of Pakistan. This study was designed to rule out the prevalence of Mycoplasma gallisepticum (MG) in layer flocks of District Faisalabad of Pakistan during a period of one year from January to December, 2010. A total of 640 sera samples were collected from 81 commercial layer flocks with complaint of respiratory distress. On the basis of serum plate agglutination test, 40 flocks were found positive for MG indicating a share of 49.01% among the respiratory diseases. Among 40 positive flocks for MG the highest prevalence (54.84 %) was found in pullets, followed by 46.34 %, and 44.44 % in adult and old laying flocks, respectively. Similarly, seroprevalence was also higher (49.01%) in pullets as compared to old layers (28.71%). The disease was more prevalent in winter season (45.13 %) in comparison with the summer season (36.30 %). With respect to flocking density, the higher prevalence rate (48.11%) was recorded in flocks having high bird density as compared to those with lower one (27.27 %

    Surface functionalized N-C-TiO<sub>2</sub>/C nanocomposites derived from metal-organic framework in water vapour for enhanced photocatalytic H<sub>2</sub> generation

    No full text
    Surface-functionalized nitrogen/carbon co-doped polymorphic TiO2 phase junction nanoparticles uniformly distributed in porous carbon matrix were synthesized by a simple one-step pyrolysis of titanium based metal–organic framework (MOF), NH2-MIL-125(Ti) at 700 °C under water vapour atmosphere. Introducing water vapour during the pyrolysis of NH2-MIL-125(Ti) not only functionalizes the derived porous carbon matrix with carboxyl groups but also forms additional oxygen-rich N like interstitial/intraband states lying above the valence band of TiO2 along with the self-doped carbon, which further narrows the energy band gaps of polymorphic TiO2 nanoparticles that enhance photocatalytic charge transfer efficiency. Without co-catalyst, sample N-C-TiO2/CArW demonstrates H2 evolution activity of 426 µmol gcat-1 h−1, which remarkably outperforms commercial TiO2 (P-25) and N-C-TiO2/CAr with a 5-fold and 3-fold H2 generation, respectively. This study clearly shows that water vapour atmosphere during the pyrolysis increases the hydrophilicity of the Ti-MOF derived composites by functionalizing porous carbon matrix with carboxylic groups, as well as enhancing the electrical conductivity and charge transfer efficiency due to the formation of additional localized oxygen-rich N like interstitial/intraband states. This work also demonstrates that by optimizing the anatase–rutile phase composition of the TiO2 polymorphs, tuning the energy band gaps by N/C co-doping and functionalizing the porous carbon matrix in the N-C-TiO2/C nanocomposites, the photocatalytic H2 generation activity can be further enhanced.</p

    MOF-Derived Multi-heterostructured Composites for Enhanced Photocatalytic Hydrogen Evolution: Deciphering the Roles of Different Components

    No full text
    Bimetal-organic-framework (Bi-MOF) NH2-MIL-125(Ti/Cu)-derived nanocomposites are systematically investigated to elucidate the role of individual species TiO2, CuxO and the porous carbon matrix in photocatalytic activity. Among the studied samples, the TiO2/CuxO/C nanocomposite derived from heat processing NH2-MIL-125(Ti/Cu) under Ar/H2O vapor demonstrates the highest photocatalytic H2 evolution performance due to the formation of a phasejunction between the well-crystallized anatase/rutile TiO2 polymorph, the optimized and codoped nitrogen/carbon in the composites, the formation of p-n heterojunctions between the TiO2 and CuxO nanoparticles, as well as their uniform distribution in a hydrophilic porous carbon matrix decorated with N and carboxylic functional groups. These parameters enable the in situ-formed multi-heterostructures in these nanocomposites to not only possess relatively narrower energy band gaps and improved spatial charge separation due to the formed type-II staggered p-n heterojunctions but also offer multiple pathways for charge diffusion, resulting in lower charge-transfer resistance, suppressed bulk charge recombination, and consequently, much improved visible-light absorption. Therefore, the Bi-MOF NH2-MIL-125(Ti/Cu)-derived TiO2/CuxO/C nanocomposite provides easily accessible active sites with an excellent photocatalytic H2 evolution activity of 3147 μmol gcat-1 h-1, 99 times higher than that of bare TiO2. This work provides a simple one-step approach to producing tunable novel nanocomposites for efficient photocatalytic H2 evolution without using expensive noble metals as cocatalysts

    Future risk assessment by estimating historical heat wave trends with projected heat accumulation using SimCLIM climate model in Pakistan

    No full text
    Climate change has adverse effects at global, regional and local level. Heat wave events have serious contribution for global warming and natural hazards in Pakistan. Historical (1997-2015) heat wave were analyzed over different provinces (Punjab, Sindh and Baluchistan) of Pakistan to identify the maximum temperature trend. Heat accumulation in Pakistan were simulated by the General Circulation Model (GCM) combined with 3 GHG (Green House Gases) Representative Concentration Pathways (RCPs) (RCP-4.5, 6.0, and 8.5) by using SimCLIM model (statistical downscaling model for future trend projections). Heat accumulation was projected for year 2030, 2060, and 2090 for seasonal and annual analysis in Pakistan. Heat accumulation were projected to increase by the baseline year (1995) was represented in percentage change. Projection shows that Sindh and southern Punjab was mostly affected by heat accumulation. This study identified the rising trend of heat wave over the period (1997-2015) for Punjab, Sindh and Baluchistan (provinces of Pakistan), which identified that most of the meteorological stations in Punjab and Sindh are highly prone to heat waves. According to model projection; future trend of annual heat accumulation, in 2030 was increased 17%, 26%, and 32% but for 2060 the trends were reported by 54%, 49%, and 86% for 2090 showed highest upto 62%, 75%, and 140% for RCP-4.5, RCP-6.0, and RCP-8.5, respectively. While seasonal trends of heat accumulation were projected to maximum values for monsoon and followed by pre-monsoon and post monsoon. Heat accumulation in monsoon may affect the agricultural activities in the region under study

    Bimetal-organic framework derived multi-heterostructured TiO<sub>2</sub>/Cu<sub>x</sub>O/C nanocomposites with superior photocatalytic H<sub>2</sub>generation performance

    No full text
    In situformation of p-n heterojunctions between TiO2and CuxO in heteroatom-doped carbon nanocomposites and their applications in photocatalytic H2evolution were demonstrated. One-step pyrolysis of bimetal-organic-frameworks NH2-MIL-125(Ti/Cu) in steam at 700 °C forms a p-n heterojunction between TiO2and CuxO nanoparticles. Concurrently, a phasejunction between nitrogen/carbon co-doped anatase and rutile TiO2is formed, accompanied by the formation of CuxO heterostructures. These multi-heterostructures are embedded in N-containing and hydrophilic carboxyl functionalized carbon matrix. The optimized TiO2/CuxO/C composite multi-heterostructures offer multiple pathways for photoinduced electrons and holes migration, absorb more visible light, and provide an increased number of active sites for photocatalytic reactions. Without loading expensive noble metals, the TiO2/CuxO/C nanocomposite derived at 700 °C in steam exhibited a superior photocatalytic H2generation activity of 3298 μmol gcat−1h−1under UV-Visible light, 40 times higher than that of commercial TiO2. This work offers a simple approach to fabricate novel photocatalytic nanocomposites for efficient H2generation.ChemE/O&O groepChemE/Catalysis Engineerin

    Dynamic S-Box Design Using a Novel Square Polynomial Transformation and Permutation

    No full text
    New era ciphers employ substitution boxes (S-boxes) which assist in the provision of security for the plaintext in the encryption phase and transforming the ciphertext on the receiver side into original plaintext in the decryption phase. The overall security of a given cipher engaging an S-box greatly depends on the cryptographic forte of the respective S-box. Consequently, many researchers have used different innovative approaches to construct robust S-Boxes. In this article, an innovative and modest square polynomial transformation, the very first time, along with a novel affine transformation and a pioneering permutation approach to construct dynamic S-boxes is proposed. The proposed method has the capability to erect a huge number of robust S-boxes by applying minute changes in the parameters of transformation and permutation processes. An example S-Box is generated, and its recital analysis has been done using typical criteria including bijectivity, strict avalanche criterion, nonlinearity, bit independence criterion, linear probability, differential probability, and fixed-point analysis to check its cryptographic forte. This performance of the proposed S-box is placed side by side against state-of-the-art S-boxes to prove its strength. The performance and comparative analyses authenticate that the projected S-box possesses the true competence for its application in modern-day ciphers

    Surface functionalized N-C-TiO<sub>2</sub>/C nanocomposites derived from metal-organic framework in water vapour for enhanced photocatalytic H<sub>2</sub> generation

    No full text
    Surface-functionalized nitrogen/carbon co-doped polymorphic TiO2 phase junction nanoparticles uniformly distributed in porous carbon matrix were synthesized by a simple one-step pyrolysis of titanium based metal–organic framework (MOF), NH2-MIL-125(Ti) at 700 °C under water vapour atmosphere. Introducing water vapour during the pyrolysis of NH2-MIL-125(Ti) not only functionalizes the derived porous carbon matrix with carboxyl groups but also forms additional oxygen-rich N like interstitial/intraband states lying above the valence band of TiO2 along with the self-doped carbon, which further narrows the energy band gaps of polymorphic TiO2 nanoparticles that enhance photocatalytic charge transfer efficiency. Without co-catalyst, sample N-C-TiO2/CArW demonstrates H2 evolution activity of 426 µmol gcat-1 h−1, which remarkably outperforms commercial TiO2 (P-25) and N-C-TiO2/CAr with a 5-fold and 3-fold H2 generation, respectively. This study clearly shows that water vapour atmosphere during the pyrolysis increases the hydrophilicity of the Ti-MOF derived composites by functionalizing porous carbon matrix with carboxylic groups, as well as enhancing the electrical conductivity and charge transfer efficiency due to the formation of additional localized oxygen-rich N like interstitial/intraband states. This work also demonstrates that by optimizing the anatase–rutile phase composition of the TiO2 polymorphs, tuning the energy band gaps by N/C co-doping and functionalizing the porous carbon matrix in the N-C-TiO2/C nanocomposites, the photocatalytic H2 generation activity can be further enhanced.4/1/21 nog geen publishersversionChemE/O&O groepChemE/Catalysis Engineerin
    corecore