35 research outputs found

    Co-infection of Influenza B and Streptococci causing severe pneumonia and septic shock in healthy women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since the Influenza A pandemic in 1819, the association between the influenza virus and <it>Streptococcus pneumoniae </it>has been well described in literature. While a leading role has been so far attributed solely to Influenza A as the primary infective pathogen, Influenza B is generally considered to be less pathogenic with little impact on morbidity and mortality of otherwise healthy adults. This report documents the severe synergistic pathogenesis of Influenza B infection and bacterial pneumonia in previously healthy persons not belonging to a special risk population and outlines therapeutic options in this clinical setting.</p> <p>Case Presentation</p> <p>During the seasonal influenza epidemic 2007/2008, three previously healthy women presented to our hospital with influenza-like symptoms and rapid clinical deterioration. Subsequent septic shock due to severe bilateral pneumonia necessitated intensive resuscitative measures including the use of an interventional lung assist device. Microbiological analysis identified severe dual infections of Influenza B with <it>Streptococcus pyogenes </it>in two cases and <it>Streptococcus pneumoniae </it>in one case. The patients presented with no evidence of underlying disease or other known risk factors for dual infection such as age (< one year, > 65 years), pregnancy or comorbidity.</p> <p>Conclusions</p> <p>Influenza B infection can pose a risk for severe secondary infection in previously healthy persons. As patients admitted to hospital due to severe pneumonia are rarely tested for Influenza B, the incidence of admission due to this virus might be greatly underestimated, therefore, a more aggressive search for influenza virus and empirical treatment might be warranted. While the use of an interventional lung assist device offers a potential treatment strategy for refractory respiratory acidosis in addition to protective lung ventilation, the combined empiric use of a neuraminidase-inhibitor and antibiotics in septic patients with pulmonary manifestations during an epidemic season should be considered.</p

    Glycosylation Focuses Sequence Variation in the Influenza A Virus H1 Hemagglutinin Globular Domain

    Get PDF
    Antigenic drift in the influenza A virus hemagglutinin (HA) is responsible for seasonal reformulation of influenza vaccines. Here, we address an important and largely overlooked issue in antigenic drift: how does the number and location of glycosylation sites affect HA evolution in man? We analyzed the glycosylation status of all full-length H1 subtype HA sequences available in the NCBI influenza database. We devised the “flow index” (FI), a simple algorithm that calculates the tendency for viruses to gain or lose consensus glycosylation sites. The FI predicts the predominance of glycosylation states among existing strains. Our analyses show that while the number of glycosylation sites in the HA globular domain does not influence the overall magnitude of variation in defined antigenic regions, variation focuses on those regions unshielded by glycosylation. This supports the conclusion that glycosylation generally shields HA from antibody-mediated neutralization, and implies that fitness costs in accommodating oligosaccharides limit virus escape via HA hyperglycosylation

    Viral, bacterial, and fungal infections of the oral mucosa:Types, incidence, predisposing factors, diagnostic algorithms, and management

    Get PDF
    corecore