5,158 research outputs found
Stochastic models which separate fractal dimension and Hurst effect
Fractal behavior and long-range dependence have been observed in an
astonishing number of physical systems. Either phenomenon has been modeled by
self-similar random functions, thereby implying a linear relationship between
fractal dimension, a measure of roughness, and Hurst coefficient, a measure of
long-memory dependence. This letter introduces simple stochastic models which
allow for any combination of fractal dimension and Hurst exponent. We
synthesize images from these models, with arbitrary fractal properties and
power-law correlations, and propose a test for self-similarity.Comment: 8 pages, 2 figure
The 6-vertex model of hydrogen-bonded crystals with bond defects
It is shown that the percolation model of hydrogen-bonded crystals, which is
a 6-vertex model with bond defects, is completely equivalent with an 8-vertex
model in an external electric field. Using this equivalence we solve exactly a
particular 6-vertex model with bond defects. The general solution for the
Bethe-like lattice is also analyzed.Comment: 13 pages, 6 figures; added references for section
Quantifying signals with power-law correlations: A comparative study of detrended fluctuation analysis and detrended moving average techniques
Detrended fluctuation analysis (DFA) and detrended moving average (DMA) are
two scaling analysis methods designed to quantify correlations in noisy
non-stationary signals. We systematically study the performance of different
variants of the DMA method when applied to artificially generated long-range
power-law correlated signals with an {\it a-priori} known scaling exponent
and compare them with the DFA method. We find that the scaling
results obtained from different variants of the DMA method strongly depend on
the type of the moving average filter. Further, we investigate the optimal
scaling regime where the DFA and DMA methods accurately quantify the scaling
exponent , and how this regime depends on the correlations in the
signal. Finally, we develop a three-dimensional representation to determine how
the stability of the scaling curves obtained from the DFA and DMA methods
depends on the scale of analysis, the order of detrending, and the order of the
moving average we use, as well as on the type of correlations in the signal.Comment: 15 pages, 16 figure
Possibility between earthquake and explosion seismogram differentiation by discrete stochastic non-Markov processes and local Hurst exponent analysis
The basic purpose of the paper is to draw the attention of researchers to new
possibilities of differentiation of similar signals having different nature.
One of examples of such kind of signals is presented by seismograms containing
recordings of earthquakes (EQ's) and technogenic explosions (TE's). We propose
here a discrete stochastic model for possible solution of a problem of strong
EQ's forecasting and differentiation of TE's from the weak EQ's. Theoretical
analysis is performed by two independent methods: with the use of statistical
theory of discrete non-Markov stochastic processes (Phys. Rev. E62,6178 (2000))
and the local Hurst exponent. Time recordings of seismic signals of the first
four dynamic orthogonal collective variables, six various plane of phase
portrait of four dimensional phase space of orthogonal variables and the local
Hurst exponent have been calculated for the dynamic analysis of the earth
states. The approaches, permitting to obtain an algorithm of strong EQ's
forecasting and to differentiate TE's from weak EQ's, have been developed.Comment: REVTEX +12 ps and jpg figures. Accepted for publication in Phys. Rev.
E, December 200
A structural evaluation of the tungsten isotopes via thermal neutron capture
Total radiative thermal neutron-capture -ray cross sections for the
W isotopes were measured using guided neutron beams from
the Budapest Research Reactor to induce prompt and delayed rays from
elemental and isotopically-enriched tungsten targets. These cross sections were
determined from the sum of measured -ray cross sections feeding the
ground state from low-lying levels below a cutoff energy, E, where
the level scheme is completely known, and continuum rays from levels
above E, calculated using the Monte Carlo statistical-decay code
DICEBOX. The new cross sections determined in this work for the tungsten
nuclides are: b and
b;
b and b; b and
b; and,
b and b. These results are consistent with
earlier measurements in the literature. The W cross section was also
independently confirmed from an activation measurement, following the decay of
W, yielding values for that are consistent
with our prompt -ray measurement. The cross-section measurements were
found to be insensitive to choice of level density or photon strength model,
and only weakly dependent on E. Total radiative-capture widths
calculated with DICEBOX showed much greater model dependence, however, the
recommended values could be reproduced with selected model choices. The decay
schemes for all tungsten isotopes were improved in these analyses.Comment: 25 pages, 15 figures, 15 table
Late-Time Optical and UV Spectra of SN 1979C and SN 1980K
A low-dispersion Keck I spectrum of SN 1980K taken in August 1995 (t = 14.8
yr after explosion) and a November 1997 MDM spectrum (t = 17.0 yr) show broad
5500 km s^{-1} emission lines of H\alpha, [O I] 6300,6364 A, and [O II]
7319,7330 A. Weaker but similarly broad lines detected include [Fe II] 7155 A,
[S II] 4068,4072 A, and a blend of [Fe II] lines at 5050--5400 A. The presence
of strong [S II] 4068,4072 A emission but a lack of [S II] 6716,6731 A emission
suggests electron densities of 10^{5-6} cm^{-3}. From the 1997 spectra, we
estimate an H\alpha flux of 1.3 \pm 0.2 \times 10^{-15} erg cm^{-2} s^{-1}
indicating a 25% decline from 1987--1992 levels during the period 1994 to 1997,
possibly related to a reported decrease in its nonthermal radio emission.Comment: 21 pages, 8 figures, submitted to the Astronomical Journa
Electron affinity of Li: A state-selective measurement
We have investigated the threshold of photodetachment of Li^- leading to the
formation of the residual Li atom in the state. The excited residual
atom was selectively photoionized via an intermediate Rydberg state and the
resulting Li^+ ion was detected. A collinear laser-ion beam geometry enabled
both high resolution and sensitivity to be attained. We have demonstrated the
potential of this state selective photodetachment spectroscopic method by
improving the accuracy of Li electron affinity measurements an order of
magnitude. From a fit to the Wigner law in the threshold region, we obtained a
Li electron affinity of 0.618 049(20) eV.Comment: 5 pages,6 figures,22 reference
- …