research

Quantifying signals with power-law correlations: A comparative study of detrended fluctuation analysis and detrended moving average techniques

Abstract

Detrended fluctuation analysis (DFA) and detrended moving average (DMA) are two scaling analysis methods designed to quantify correlations in noisy non-stationary signals. We systematically study the performance of different variants of the DMA method when applied to artificially generated long-range power-law correlated signals with an {\it a-priori} known scaling exponent α0\alpha_{0} and compare them with the DFA method. We find that the scaling results obtained from different variants of the DMA method strongly depend on the type of the moving average filter. Further, we investigate the optimal scaling regime where the DFA and DMA methods accurately quantify the scaling exponent α0\alpha_{0}, and how this regime depends on the correlations in the signal. Finally, we develop a three-dimensional representation to determine how the stability of the scaling curves obtained from the DFA and DMA methods depends on the scale of analysis, the order of detrending, and the order of the moving average we use, as well as on the type of correlations in the signal.Comment: 15 pages, 16 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 27/12/2021
    Last time updated on 05/06/2019