240 research outputs found

    Treatment timing and patient compliance in the management of facial fractures

    Get PDF

    Shroud Effects on Load-independent Power Loss of High-speed Rotorcraft Gearing

    Get PDF
    High-speed rotorcraft transmissions are subject to load-independent power losses consisting of drag loss and pumping loss. Tightly conforming shrouds enclosing the transmission gears are often incorporated to reduce the drag component of the total loadindependent losses. However, tightly conforming axial shrouds can result in an increase in the pumping loss component. Quantifying the pumping loss of shrouded gear transmissions has been the subject of many studies. This study presents a new approach for estimating pumping loss based on the concept of swept volume and examines the applicability of the approach to various shroud configurations. The drag loss and pumping loss of shrouded cylindrical gear pairs have been determined through testing using the NASA Glenn Research Center (GRC) Gear Windage Test Facility. The results from this testing have been compared to theoretical results using the formulations presented in this study. In addition, computational fluid dynamic (CFD) analysis has been conducted for the various shroud configurations tested at NASA GRC. The results from the CFD analysis confirm the theoretical and empirical results and provide insight into the applicability of the swept volume approach for estimating pumping power loss of shrouded gear transmissions

    The Jetting Phenomena in Meshed Spur Gears

    Get PDF
    Rotorcraft gearbox transmissions are required to efficiently transfer power from the turbine engine to the main and tail rotor blades. Losses in transmission efficiency impact mission payload and aircraft range. These systems are expected to deliver high power with high gear pitch line velocities. More recently, shrouding has been employed to reduce windage power losses associated with the high gear rotational speeds. However, recent experimental results from tests conducted by the authors show the negative impact of close clearance shrouds on windage power loss, particularly at the meshed region where flow is ejected, or jetted, from the collapsing tooth spaces. A literature review was conducted to gain further insight into the phenomenon of gear mesh jetting and strategies to mitigate and control the associated losses. An analysis was conducted on windage losses in the mesh region. Test results are given for a modified shroud configuration. Finally, a discussion on observed trends follows with suggestions on future research

    Jetting Phenomenon in Meshed Spur Gears

    Get PDF
    Rotorcraft gearbox transmissions are required to efficiently transfer power from the turbine engine to the main and tail rotor blades. Losses in transmission efficiency impacts mission payload and aircraft range. These systems are expected to deliver high power with high gear pitch line velocities. More recently, shrouding has been employed to reduce windage power losses associated with the high gear rotational speeds. However, recent experimental results from tests conducted by the authors show the negative impact of close clearance shrouds on windage power loss, particularly at the meshed region where flow is ejected, or jetted, from the collapsing tooth spaces. A literature review was conducted to gain further insight into the phenomenon of gear mesh jetting and strategies to mitigate and control the associated losses. A discussion on observed trends follows with suggestions on future research

    Baseline Experimental Results on the Effect of Oil Temperature on Shrouded Meshed Spur Gear Windage Power Loss

    Get PDF
    Rotorcraft gearbox efficiencies are reduced at increased surface speeds due to viscous and impingement drag on the gear teeth. This windage power loss can affect overall mission range, payload, and frequency of transmission maintenance. Experimental and analytical studies on shrouding for single gears have shown it be potentially effective in mitigating windage power loss. Efficiency studies on unshrouded meshed gears have shown the effect of speed, oil viscosity, temperature, load, lubrication scheme, etc. on gear windage power loss. The open literature does not cite data on shrouded meshed spur gears. Gear windage power loss test results are presented on shrouded meshed spur gears at elevated oil inlet temperatures and constant oil pressure both with and without shrouding. Shroud effectiveness is compared at four oil inlet temperatures. The results are compared to the available literature and follow-up work is outlined

    Initial Experiments of High-Speed Drive System Windage Losses

    Get PDF
    High speed gearing performance is very important to the overall drive system efficiency. Certain losses such as gear meshing and bearing drag can be minimized by design changes such as pressure angle of the gears and the geometry and type of bearings being used. One component that can have a large effect on the overall performance of high-speed drive systems is the parasitic drag known as gear windage. This loss mechanism is not well understood and minimizing this component is usually accomplished through much trial and error. The results presented in this paper will document some of the design parameter effects on the amount of windage losses. A new test facility at NASA Glenn has been assembled to systematically study the design variables. Results from recent tests will be presented. The tests are for a single gear, with and without lubricants, and some initial studies using shroud

    Swept Volume Approach for the Characterization of Pumping Loss of Shrouded Meshed Cylindrical Gears

    Get PDF
    High speed rotorcraft transmissions are subject to load-independent power losses consisting of drag and pumping loss. Tightly conforming shrouds enclosing the transmission gears are often incorporated to reduce the drag component of the total load-independent losses. However, tightly conforming axial shrouding can result in an increase in the pumping loss component. Quantifying the pumping loss of shrouded gear transmissions has been the subject of many studies. This study presents a new approach for estimating pumping loss based on the concept of swept volume borrowed from the positive displacement pump and compressor industry. In this study, pumping loss of shrouded gear transmissions is considered to be related to the swept volume of the gear sets and the downstream flow resistance created by the shroud clearances. The drag loss and pumping loss of a spur gear pair have been determined through testing using the NASA Glenn Research Center Gear Windage Test Facility. The results from this testing have been compared to theoretical results using the formulations presented in this study. Good correlation exist between the test pumping power loss and the predicted pumping power loss for tightly conforming axial shroud configurations

    Low dose oral iodized oil for control of iodine deficiency in children

    Get PDF
    In areas where iodized salt is not available, oral iodized oil is often used to correct I deficiency despite a lack of consensus on the optimal dose or duration of effect, particularly in children, a main target group. Annual doses ranging from 400 to 1000 mg have been advocated for school-age children. Because lower doses of iodized oil have been shown to be effective in treating I deficiency in adults, the aim of this study was to evaluate the efficacy and safety of a low dose of oral iodized oil in goitrous I-deficient children. Goitrous children (n 104, mean age 8·4 years, range 6-12 years, 47 % female) received 0·4 ml oral iodized poppyseed-oil containing 200 mg I. Baseline measurements included I in spot urines (UI), serum thyroxine (T4), whole blood thyroid-stimulating hormone (TSH), and thyroid-gland volume using ultrasound. At 1, 5, 10, 15, 30 and 50 weeks post-intervention, UI, TSH and T4 were measured. At 10, 15, 30 and 50 weeks, thyroid-gland volume was remeasured. At 30 and 50 weeks the mean percentage change in thyroid volume from baseline was -35 % and -41 % respectively. The goitre rate fell to 38 % at 30 weeks and 17 % at 50 weeks. No child showed signs of I-induced hypo- or hyperthyroidism. UI remained significantly increased above baseline for the entire year (P < 0·001); the median UI at 50 weeks was 97 μg/l, at the World Health Organization cut-off value (100 μg/l) for I-deficiency disorders risk. In this group of goitrous children, an oral dose of 200 mg I as Lipiodol (Guerbert, Roissy CdG Cedex, France) was safe and effective for treating goitre and maintaining normal I status for at least 1 yea

    Iron deficiency up-regulates iron absorption from ferrous sulphate but not ferric pyrophosphate and consequently food fortification with ferrous sulphate has relatively greater efficacy in iron-deficient individuals

    Get PDF
    Fe absorption from water-soluble forms of Fe is inversely proportional to Fe status in humans. Whether this is true for poorly soluble Fe compounds is uncertain. Our objectives were therefore (1) to compare the up-regulation of Fe absorption at low Fe status from ferrous sulphate (FS) and ferric pyrophosphate (FPP) and (2) to compare the efficacy of FS with FPP in a fortification trial to increase body Fe stores in Fe-deficient children v. Fe-sufficient children. Using stable isotopes in test meals in young women (n 49) selected for low and high Fe status, we compared the absorption of FPP with FS. We analysed data from previous efficacy trials in children (n 258) to determine whether Fe status at baseline predicted response to FS v. FPP as salt fortificants. Plasma ferritin was a strong negative predictor of Fe bioavailability from FS (P<0·0001) but not from FPP. In the efficacy trials, body Fe at baseline was a negative predictor of the change in body Fe for both FPP and FS, but the effect was significantly greater with FS (P<0·01). Because Fe deficiency up-regulates Fe absorption from FS but not from FPP, food fortification with FS may have relatively greater impact in Fe-deficient children. Thus, more soluble Fe compounds not only demonstrate better overall absorption and can be used at lower fortification levels, but they also have the added advantage that, because their absorption is up-regulated in Fe deficiency, they innately ‘target' Fe-deficient individuals in a populatio

    Experimental Investigation of Shrouding on Meshed Spur Gear Windage Power Loss

    Get PDF
    Windage power loss in high-speed gearboxes result in efficiency losses and increased heating due to drag on the gear teeth. Meshed spur gear windage power loss test results are presented at ambient oil inlet temperatures both with and without shrouding. The rate of windage power loss is observed to increase above 10,000 ft.min., gear surface speed, similar to results presented in the literature. Shrouding is observed to become more effective above 15,000 ft.min., decreasing power loss by 10 at 25,000 ft.min. The need for gearbox oil drain slots limits the effectiveness of shrouding on reducing windage power loss. Also, windage power loss is observed to decrease with increasing gearbox temperatures and to increase with oil flow. Windage power losses for the unshrouded meshed spur gears are 7x more than losses determined from unshrouded single spur gear tests. A 6x to 12x increase in windage power is observed comparing shrouded single spur gear data with shrouded meshed spur gear data. Based on this preliminary study additional research is suggested to determine the effect of oil drain slot configurations, axial and radial shroud clearances, and higher gear surface speeds on windage power loss. Additional work is also suggested to determine the sensitivity of windage power loss to oil temperature and oil flow. Windage power loss of meshed spur gears tested in both the shrouded and unshrouded configurations is shown to be more than double versus the same spur gears run individually in the same shroud configurations. Further study of the physical processes behind these results is needed for optimizing gearbox shrouds for minimum windage power loss
    corecore