14 research outputs found

    A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from facts

    Get PDF
    Mercury is transported globally in the atmosphere mostly in gaseous elemental form (GEM, Hg0 gas), but still few worldwide studies taking into account different and contrasted environmental settings are available in a single publication. This work presents and discusses data from Argentina, Bolivia, Bosnia and Herzegovina, Brazil, Chile, China, Croatia, Finland, Italy, Russia, South Africa, Spain, Slovenia and Venezuela. We classified the information in four groups: (1) mining districts where this contaminant poses or has posed a risk for human populations and/or ecosystems; (2) cities, where the concentration ofatmospheric mercury could be higher than normal due to the burning of fossil fuels and industrial activities; (3) areas with natural emissions from volcanoes; and (4) pristine areas where no anthropogenic influence was apparent. All the surveys were performed using portable LUMEX RA-915 series atomic absorption spectrometers. The results for cities fall within a low GEM concentration range that rarely exceeds 30 ng m-3, that is, 6.6 times lower than the restrictive ATSDR threshold (200 ng m-3) for chronic exposure to this pollutant. We also observed this behavior in the former mercury mining districts, where few data were above 200 ng m-3.We noted that high concentrations of GEM are localized phenomena that fade away in short distances. However, this does not imply that they do not pose a risk for those working in close proximity to the source. This is the case of the artisanal gold miners that heat the Au–Hg amalgam to vaporize mercury. In this respect, while GEM can be truly regarded as a hazard, because of possible physical–chemical transformations into other species, it is only under these localized conditions, implying exposure to high GEM concentrations, which it becomes a direct risk for humans.Grants CGL2009-13171 and CTM2012-33918 from the Spanish Ministry of Economy and Competitiveness and PII1I09-0142- 4389 from theCastilla-LaMancha (Spain)RegionalGovernment.Published713-7346A. Monitoraggio ambientale, sicurezza e territorioJCR Journalrestricte

    Carcinogenic organic content of particulate matter at urban locations with different pollution sources

    No full text
    Polycyclic aromatic hydrocarbons (PAHs) are compounds known for their adverse effects on human health. Many of them are proven carcinogens, especially those with 5 and 6 aromatic rings, which under normal tropospheric conditions are found in the particle-phase. Benzo(a)pyrene (BaP) is often measured as their general representative. Sarajevo, the capital of Bosnia and Herzegovina, is among the European cities with the poorest air quality. However, in Sarajevo PAHs are neither routinely measured within the air quality monitoring network nor have been a subject of extended, continuous field studies during the most polluted cold periods of the year. The capital of Croatia, Zagreb, is located approximately 300 km air distance north-west from Sarajevo. PAH mass concentrations in Zagreb have been measured continuously since 1994 within air quality monitoring networks. During winter 2017/2018, the SAFICA project (Sarajevo Canton Winter Field Campaign 2018) was carried out in order to characterize the chemical composition of organic and inorganic aerosol in the Sarajevo Canton. This paper presents the results of PAH measurements in the cities of Sarajevo and Zagreb at one urban location per city. Daily (24 h), continuous samples of PM10 (particulate matter with aerodynamic diameters ≤10 μm) were collected during heating season, from December 27, 2017 to February 27, 2018. Mass concentrations of eleven particle-phase PAHs in Sarajevo and Zagreb from filter samples collected during the same period were compared. The average BaP ambient mass concentrations in Sarajevo and Zagreb were 6.93 ng m−3 and 3.11 ng m−3, respectively. The contribution of BaP to the total PAH mass concentration was similar at both locations (11%). However, much higher contributions of particle-phase fluoranthene and pyrene were found in Sarajevo. Contributions of individual PAH, diagnostic ratios and factor analysis indicate that combustion of gasoline and diesel from vehicle traffic are a potential source of PAHs at both locations, as well as combustion of other liquid fossil fuels (petroleum and fuel oil). Wood burning was occasionally indicated as a PAH emission source in Zagreb, while in Sarajevo the contribution of PAHs from wood and coal combustion was more evident. Calculated value for total carcinogenic potency (TCP) of PAHs, which was estimated using toxic equivalence factors from the literature, in PM10 samples collected in Sarajevo was more than twice higher than in Zagreb (10.6 ng m−3 and 4.7 ng m−3, respectively). BaP had the highest contribution to the TCP at both locations (69 and 67%)

    On the horizon European refugees and migrants advice and guidance into employment

    No full text
    Report of the European Union Employment-Horizon Project 1995-1997Available from British Library Document Supply Centre-DSC:m02/38599 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Analysis of PM10, Pb, Cd, and Ni atmospheric concentrations during domestic heating season in Sarajevo, Bosnia and Herzegovina, from 2010 to 2019

    No full text
    This paper examines atmospheric concentrations of particulate matter with an aerodynamic diameter smaller than 10 μm (PM10) and related particle-phase toxic heavy metals Cd, Ni, and Pb during domestic heating seasons from 2010 to 2019 in Sarajevo, Bosnia and Herzegovina. In total, 242 daily PM10 samples were collected usingmediumand high volume air samplers. Themean daily PM10 mass concentration for all measurements is 75.16 μg/m3 (with the range of 28.77–149.00 μg/m3). Variation of ambient PM10 was observed throughout the study in different years. Hourly values for PM10 measurements during two heating seasons are also presented. Metal concentrations in PM10 were analyzed by electrothermal atomic absorption spectrometry (ETAAS). Quantities of atmospheric mass concentrations of studied trace metals were observed in the following order: Pb > Ni > Cd. The mean concentrations of metals varied with Pb showing the highest concentration (ranging from 1.38 to 234.00 ng/ m3), Ni ranging from 0.87 to 42.43 ng/m3, and Cd showing the lowest concentration ranging from 0.26 to 10.09 ng/m3. The concentration of Pb and Cd in PM10 was strongly correlated, suggesting a common source or dependence of these metals in PM10 in Sarajevo. Bioaccessibility of metals in the synthetic gastric juice was also estimated. The quantities of average bioaccessible metal fractions in PM10 samples showed the following trend: Cd > Pb > Ni. The health risk assessment shows that the population of Sarajevo is at increased lifetime risk of experiencing cancer because of exposure to these Cd concentrations in PM10. In addition, parallel PM10 sampling on two samplers showed that obtained results are highly comparable

    A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from facts

    No full text
    Mercury is transported globally in the atmosphere mostly in gaseous elemental form (GEM, Hg0 gas), but still few worldwide studies taking into account different and contrasted environmental settings are available in a single publication. This work presents and discusses data from Argentina, Bolivia, Bosnia and Herzegovina, Brazil, Chile, China, Croatia, Finland, Italy, Russia, South Africa, Spain, Slovenia and Venezuela. We classified the information in four groups: (1) mining districts where this contaminant poses or has posed a risk for human populations and/or ecosystems; (2) cities, where the concentration ofatmospheric mercury could be higher than normal due to the burning of fossil fuels and industrial activities; (3) areas with natural emissions from volcanoes; and (4) pristine areas where no anthropogenic influence was apparent. All the surveys were performed using portable LUMEX RA-915 series atomic absorption spectrometers. The results for cities fall within a low GEM concentration range that rarely exceeds 30 ng m-3, that is, 6.6 times lower than the restrictive ATSDR threshold (200 ng m-3) for chronic exposure to this pollutant. We also observed this behavior in the former mercury mining districts, where few data were above 200 ng m-3.We noted that high concentrations of GEM are localized phenomena that fade away in short distances. However, this does not imply that they do not pose a risk for those working in close proximity to the source. This is the case of the artisanal gold miners that heat the Au–Hg amalgam to vaporize mercury. In this respect, while GEM can be truly regarded as a hazard, because of possible physical–chemical transformations into other species, it is only under these localized conditions, implying exposure to high GEM concentrations, which it becomes a direct risk for humans

    PAHs in the urban air of Sarajevo: levels, sources, day/night variation, and human inhalation risk

    No full text
    Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants derived from pyrolysis and pyrosynthesis processes. Industrial activity,motor vehicle emission, and domestic combustion are the main sources of PAHs in the urban atmosphere. In this work, samples collected during the day and night in the urban area of Sarajevo are analyzed separately for gaseous and particlebound PAHs; the possible origin of PAHs at the receptor site was suggested using different methods applied to the solid phase and to the total PAHs (gaseous + particulate phase). Finally, the risk level in Sarajevo associated to the carcinogenic character of the studied PAHs has been assessed. The result of this study suggests that (a) the total PAH concentrations were higher than those reported in other European cities; (b) the PAH daytime concentrations are higher than nocturnal concentrations: the sum of the PAH day/night ratios is 1.52 (gas) and 1.45 (particle phase); (c) stationary combustion and traffic were suggested to be the main sources of PAHs; (d) the average particle-bound benzo(a)pyrene (BaP) concentration (5.4 ng/m3) is higher than EU target annual value (1 ng/m3); and (e) PAH cancer risk exceeds the carcinogenic benchmark level recommended by the EPA mainly due to BaP during both the day and night periods
    corecore