46 research outputs found

    Exercise Completed When Young Provides Lifelong Benefit to Cortical Bone Structure and Estimated Strength

    Get PDF
    poster abstractExercise induces greatest bone gains during growth, yet reduced bone strength is an age-related phenomenon. This raises the question of whether exercise-induced bone changes when young persist into adulthood. The current studies used Major/Minor League Baseball (MLB/MiLB) players to explore whether exercise-induced gains in humeral bone structure and strength accrued when young persist lifelong. MLB/MiLB players are a unique model as the unilateral upper extremity loading associated with throwing enables the contralateral side to serve as an internal control site and former MLB/MiLB players were consistently exposed to extreme loading reducing secular variations in exercise levels between generations. Dominant-to-nondominant (D-to-ND) differences in humeral cross-sectional properties in MLB/MiLB players were normalized to matched controls to correct for side-to-side differences due to elevated habitual loading associated with arm dominance. Exercise when young induced significant skeletal benefits, with active MLB/MiLB players having nearly double the estimated ability to resist torsion (polar moment of inertia, IP) in the humerus of their dominant arm. The cortical bone mass and area benefits of exercise observed in active MLB/MiLB players were lost in former MLB players following 40-49 years of detraining as a result of elevated medullary expansion and endocortical trabecularization. However, 42% of the total bone area benefit persisted following 50+ years of detraining and contributed to the maintenance of 24% of the benefit on IP. In MLB players who continued to exercise during aging, medullary expansion and endocortical trabecularization were reduced and there was maintenance of the cortical bone mass and area benefits of exercise. These cumulative data indicate: 1) the extreme plasticity of the growing skeleton to exercise; 2) that exercise when young has lifelong benefits on cortical bone size and estimated strength, but not bone mass, and; 3) exercise continued during aging maintains the bone mass benefits of exercise

    Age-Related Changes in Proximal Humerus Bone Health in White Males

    Get PDF
    poster abstractThe proximal humerus is a common site for osteoporotic fracture during aging, accounting for up to 5% of fractures to the appendicular skeleton. While falls onto an outstretched hand are usually physically responsible for proximal humerus fractures, the ability of the underlying bone to resist applied loads must also play a role. Few studies have assessed proximal humerus bone health with aging. The aim of the current study was to explore age-related bone changes at the proximal humerus in men. A cross-sectional study design was used to assess peripheral quantitative computed tomography (pQCT)-derived bone properties of the proximal humerus in a cohort of 112 white males (age range = 30-85 yrs). A tomographic slice of the non-dominant upper extremity was acquired at 80% of humeral length proximal from its distal end—a location corresponding to the surgical neck of the humerus. Images were assessed for cortical (Ct.BMC) and trabecular (Tb.BMC) BMC, total (Tt.Ar), cortical (Ct.Ar) and medullary (Me.Ar) area, periosteal (Ps.Pm) and endosteal (Es.Pm) perimeter, cortical thickness (Ct.Th), and bone strength index for compression (BSIc). BSIc was calculated as the product of Tt.Ar and the square of total volumetric BMD. Data were plotted against age and linear regression lines assessed for their slope. Slopes were subsequently converted to percent change in the bone property per year. During aging, the proximal humerus expanded with Tt.Ar and Ps.Pm increasing at rates of 0.40%/yr and 0.19%/yr, respectively. However, Me.Ar (0.62%/yr) and Es.Pm (0.34%/yr) expanded at faster rates such that there was net loss of both Ct.BMC (-0.23%/yr) and Tb.BMC (-1.08%/yr). Also, the more rapid expansion of Me.Ar relative to Tt.Ar meant that Ct.Ar (-0.15%/yr) and Ct.Th (-0.34%/yr) both decreased with age. The net result of these mass and structural changes was progressive loss of bone strength with age, as indicated by a 0.44%/yr decline in BSIc. These data provide a picture of bone changes at the proximal humerus during aging. They suggest that between age 30 and 80 yrs, approximately 54% and 11% of Tb.BMC and Ct.BMC at the proximal humerus is lost, respectively. They also suggest that compressive strength of the proximal humerus declines by 22% between age 30 and 80 years. These declines in proximal humerus bone health have implications for fracture risk at this location during aging

    Peripheral quantitative computed tomography (pQCT) predicts humeral diaphysis torsional mechanical properties with good short-term precision.

    Get PDF
    Peripheral quantitative computed tomography (pQCT) is a popular tool for non-invasively estimating bone mechanical properties. Previous studies have demonstrated pQCT provides precise estimates that are good predictors of actual bone mechanical properties at popular distal imaging sites (tibia and radius). The predictive ability and precision of pQCT at more proximal sites remains unknown. The aim of the current study was to explore the predictive ability and short-term precision of pQCT estimates of mechanical properties of the midshaft humerus, a site gaining popularity for exploring the skeletal benefits of exercise. Predictive ability was determined ex vivo by assessing the ability of pQCT-derived estimates of torsional mechanical properties in cadaver humeri (density-weighted polar moment of inertia [IP] and polar Strength Strain Index [SSIP]) to predict actual torsional properties. Short-term precision was assessed in vivo by performing six repeat pQCT scans at the level of the midshaft humerus in 30 young, healthy individuals (degrees of freedom = 150), with repeat scans performed by the same and different testers and on the same and different days to explore the influences of different testers and time between repeat scans on precision errors. IP and SSIP both independently predicted at least 90% of the variance in ex vivo midshaft humerus mechanical properties in cadaveric bones. Overall values for relative precision error (root mean squared coefficients of variation) for in vivo measures of IP and SSIP at the midshaft humerus were less than 1.5% and were not influenced by pQCT assessments being performed by different testers or on different days. These data indicate that pQCT provides very good prediction of midshaft humerus mechanical properties with good short-term precision, with measures being robust against the influences of different testers and time between repeat scans

    Elevated Mechanical Loading When Young Provides Lifelong Benefits to Cortical Bone Properties in Female Rats Independent of a Surgically Induced Menopause

    Get PDF
    Exercise that mechanically loads the skeleton is advocated when young to enhance lifelong bone health. Whether the skeletal benefits of elevated loading when young persist into adulthood and after menopause are important questions. This study investigated the influence of a surgically induced menopause in female Sprague-Dawley rats on the lifelong maintenance of the cortical bone benefits of skeletal loading when young. Animals had their right forearm extrinsically loaded 3 d/wk between 4 and 10 weeks of age using the forearm axial compression loading model. Left forearms were internal controls and not loaded. Animals were subsequently detrained (restricted to cage activities) for 94 weeks (until age 2 years), with ovariectomy (OVX) or sham-OVX surgery being performed at 24 weeks of age. Loading enhanced midshaft ulna cortical bone mass, structure, and estimated strength. These benefits persisted lifelong and contributed to loaded ulnas having greater strength after detraining. Loading also had effects on cortical bone quality. The benefits of loading when young were not influenced by a surgically induced menopause because there were no interactions between loading and surgery. However, OVX had independent effects on cortical bone mass, structure, and estimated strength at early postsurgery time points (up to age 58 weeks) and bone quality measures. These data indicate skeletal loading when young had lifelong benefits on cortical bone properties that persisted independent of a surgically induced menopause. This suggests that skeletal loading associated with exercise when young may provide lifelong antifracture benefits by priming the skeleton to offset the cortical bone changes associated with aging and menopause

    Physical activity when young provides lifelong benefits to cortical bone size and strength in men

    Get PDF
    The skeleton shows greatest plasticity to physical activity-related mechanical loads during youth but is more at risk for failure during aging. Do the skeletal benefits of physical activity during youth persist with aging? To address this question, we used a uniquely controlled cross-sectional study design in which we compared the throwing-to-nonthrowing arm differences in humeral diaphysis bone properties in professional baseball players at different stages of their careers (n = 103) with dominant-to-nondominant arm differences in controls (n = 94). Throwing-related physical activity introduced extreme loading to the humeral diaphysis and nearly doubled its strength. Once throwing activities ceased, the cortical bone mass, area, and thickness benefits of physical activity during youth were gradually lost because of greater medullary expansion and cortical trabecularization. However, half of the bone size (total cross-sectional area) and one-third of the bone strength (polar moment of inertia) benefits of throwing-related physical activity during youth were maintained lifelong. In players who continued throwing during aging, some cortical bone mass and more strength benefits of the physical activity during youth were maintained as a result of less medullary expansion and cortical trabecularization. These data indicate that the old adage of “use it or lose it” is not entirely applicable to the skeleton and that physical activity during youth should be encouraged for lifelong bone health, with the focus being optimization of bone size and strength rather than the current paradigm of increasing mass. The data also indicate that physical activity should be encouraged during aging to reduce skeletal structural decay

    Cortical and trabecular bone benefits of mechanical loading are maintained long term in mice independent of ovariectomy.

    Get PDF
    Skeletal loading enhances cortical and trabecular bone properties. How long these benefits last after loading cessation remains an unresolved, clinically relevant question. This study investigated long-term maintenance of loading-induced cortical and trabecular bone benefits in female C57BL/6 mice and the influence of a surgically induced menopause on the maintenance. Sixteen-week-old animals had their right tibia extrinsically loaded 3 days/week for 4 weeks using the mouse tibial axial compression loading model. Left tibias were not loaded and served as internal controls. Animals were subsequently detrained (restricted to cage activities) for 0, 4, 8, 26, or 52 weeks, with ovariectomy (OVX) or sham-OVX surgery being performed at 0 weeks detraining. Loading increased midshaft tibia cortical bone mass, size, and strength, and proximal tibia bone volume fraction. The cortical bone mass, area, and thickness benefits of loading were lost by 26 weeks of detraining because of heightened medullary expansion. However, loading-induced benefits on bone total area and strength were maintained at each detraining time point. Similarly, the benefits of loading on bone volume fraction persisted at all detraining time points. The long-term benefits of loading on both cortical and trabecular bone were not influenced by a surgically induced menopause because there were no interactions between loading and surgery. However, OVX had independent effects on cortical bone properties at early (4 and 8 weeks) detraining time points and trabecular bone properties at all detraining time points. These cumulative data indicate loading has long-term benefits on cortical bone size and strength (but not mass) and trabecular bone morphology, which are not influenced by a surgically induced menopause. This suggests skeletal loading associated with physical activity may provide long-term benefits by preparing the skeleton to offset both the cortical and trabecular bone changes associated with aging and menopause

    Do All Lives Have the Same Value? Support for International Military Interventions as a Function of Political System and Public Opinion of the Target States

    Get PDF
    This research examined the support for international military interventions as a function of the political system and the public opinion of the target country. In two experiments, we informed participants about a possible military intervention by the international community towards a sovereign country whose government planned to use military force against a secessionist region. They were then asked whether they would support this intervention whilst being reminded that it would cause civilian deaths. The democratic or nondemocratic political system of the target country was experimentally manipulated, and the population support for its belligerent government policy was either assessed (Experiment 1) or manipulated (Experiment 2). Results showed greater support for the intervention when the target country was nondemocratic, as compared to the democratic and the control conditions, but only when its population supported the belligerent government policy. Support for the external intervention was low when the target country was democratic, irrespective of national public opinion. These findings provide support for the democracy-as-value hypothesis applied to international military interventions, and suggest that civilian deaths (collateral damage) are more acceptable when nondemocratic populations support their government's belligerent policy

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information about HabEx can be found here: https://www.jpl.nasa.gov/habex
    corecore