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Abstract

Skeletal loading enhances cortical and trabecular bone properties. How long these benefits last

following loading cessation remains an unresolved, clinically-relevant question. This study

investigated long-term maintenance of loading-induced cortical and trabecular bone benefits in

female C57BL/6 mice and the influence of a surgically-induced menopause on the maintenance.

16-week-old animals had their right tibia extrinsically loaded 3 days/week for 4 weeks using the

mouse tibial axial compression loading model. Left tibias were not loaded and served as internal

controls. Animals were subsequently detrained (restricted to cage activities) for 0, 4, 8, 26 or 52

weeks, with ovariectomy (OVX) or sham-OVX surgery being performed at 0 weeks detraining.

Loading increased midshaft tibia cortical bone mass, size and strength, and proximal tibia bone

volume fraction. The cortical bone mass, area and thickness benefits of loading were lost by 26

weeks of detraining due to heightened medullary expansion. However, loading-induced benefits

on bone total area and strength were maintained at each detraining time point. Similarly, the

benefits of loading on bone volume fraction persisted at all detraining time points. The long-term

benefits of loading on both cortical and trabecular bone were not influenced by a surgically-

induced menopause as there were no interactions between loading and surgery. However, OVX

had independent effects on cortical bone properties at early (4 and 8 weeks) detraining time points

and trabecular bone properties at all detraining time points. These cumulative data indicate loading

has long-term benefits on cortical bone size and strength (but not mass) and trabecular bone

morphology which are not influenced by a surgically-induced menopause. This suggests skeletal

loading associated with physical activity may provide long-term benefits by preparing the skeleton

to offset both the cortical and trabecular bone changes associated with aging and menopause.
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INTRODUCTION

Bone adapts to its mechanical environment with the young skeleton showing greatest

plasticity to physical activity-induced mechanical loads. As the skeletal benefit of a lifetime

of physical activity appears to occur mainly during the years of skeletal development,(1-3) it

has been hypothesized the growing years present a ‘window of opportunity’ to induce the

skeletal benefits of physical activity and prepare the skeleton to offset bone loss associated

with aging.(4, 5) In order for physical activity-induced bone changes when young to have an

impact later in life they need to persist into adulthood.

Numerous animal and clinical studies have demonstrated cessation of physical activity is

associated with partial maintenance of the bone mass benefits of elevated loading when

young; (6-9) however, the mass benefits diminish over time and do not appear to last

lifelong.(10-15) In contrast, mechanisms exist for loading-induced bone size changes

generated when young to last. Physical activity-induced loading of the young skeleton

deposits new bone on the outer periosteal surface to increase bone size,(16) whereas bone

loss during aging primarily occurs on the endocortical surface.(17) The discordant bone

surface effects of loading and aging potentially enables the size benefits of loading when

young to persist long-term and have lasting benefits on bone strength.

We previously used the forearm axial compression loading model in rats to demonstrate

elevated skeletal loading when young with or without subsequent estrogen depletion has

lifelong benefits on ulna cortical bone size and strength.(15, 18) Studying the effects of

estrogen-depletion following the completion of skeletal loading when young is an important

translatable question as it represents the clinical scenario of physical activity-induced

skeletal changes when young followed by menopause later in life. Unfortunately, the rat

ulna is limited with regard to studying the endocortical effects of mechanical loading and

estrogen depletion as it has a negligible medullary cavity and, consequently endocortical

surface available for bone resorption. The mouse ulna may be more suitable to exploring the

endocortical effects of mechanical loading and estrogen depletion as it has a relatively larger

medullary-to-cortical area ratio. However, neither the mouse or rat ulna readily allows

investigation of the lasting benefits of mechanical loading on trabecular bone properties due

to the principally cortical bone structure of the ulna. Exploring the lasting benefits of

mechanical loading on trabecular bone properties in estrogen-replete and -deplete animals is

important as the trabecular bone compartment appears more susceptible to the effects of

both aging and estrogen removal.(19)

The aim of the current study was to explore the long-term maintenance of loading-induced

cortical and trabecular bone benefits and the influence of estrogen depletion on the

maintenance. A within-animal design was utilized whereby unilateral extrinsic skeletal

loading was achieved using the mouse tibial axial compression loading model.(20, 21) The

mouse tibial axial compression loading model simultaneously induces both cortical and

trabecular bone adaptation, with the mouse tibia having a larger medullary-to-cortical area

ratio than the ulna. Estrogen depletion was achieved by ovariectomy (OVX) to create a

surgically-induced menopause.
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MATERIALS AND METHODS

Animals

Female C57BL/6J mice (n=225) were purchased from Jackson Laboratories (Bar Harbor,

ME) and acclimatized until 16 wk of age prior to experimentation. C57BL/6J mice were

selected because of their previously demonstrated skeletal responsiveness to mechanical

loading, aging and OVX.(22-25) All procedures were performed following approval of the

Institutional Animal Care and Use Committee of Indiana University.

Mechanical loading

The right hindlimb of each animal was extrinsically loaded (loaded group) using the tibial

axial compression loading model(20, 21) with the animal anesthetized using isoflurane

inhalation (2% at 1.5 L/min for initial knockdown in a plastic container and 1.0-1.5% at 1.5

L/min via a facemask for maintenance of anesthesia). The model loads the tibia through

contacts at the flexed knee and dorsiflexed foot to induce cortical and trabecular bone

adaptation. Loading commenced at 16 wk of age and was introduced 3 days/wk for 4 wk

using an electromechanical actuator (ElectroForce® 3200; Bose Corporation, Eden Praire,

MN). The loading waveform consisted of a 2-Hz haversine waveform for 360 cycles/day

with a peak load of 9N. A preliminary study in our laboratory using animals of the same

genetic background, sex and age revealed these loading parameters elicited a tensile strain of

1,833 με (95% CI, 1,460 με to 2,206 με) on the medial surface of the midshaft tibia and

induced lamellar bone adaptation within both cortical and trabecular bone compartments.(26)

Left tibias served as internal controls and were not loaded (non-loaded group). Normal cage

activity was allowed between loading sessions and throughout the study.

Surgery

One group of animals was euthanized 1 wk following completion of the loading program (0

wks detraining group). A lag time of 1 wk was implemented to allow skeletal adaptation to

the final loading sessions to occur. All other animals were randomly divided into two

surgical groups—OVX and sham-OVX (SHAM). Surgeries were performed under

inhalation anesthesia at 1 wk following completion of the loading program (21 wks of age).

A small dorsal midline incision was made and the muscle wall incised lateral to the midline

and below the last rib. The periovarian fat pad was gently grasped and exteriorized, and

ovary identified. In OVX animals, the fallopian tube between the fat pad and uterus was

crushed. The crushed area was cut and the fat pad containing the ovary removed. The uterus

was replaced and the procedure repeated on the contralateral side. The skin incision was

closed with a surgical wound clip. In SHAM animals, the ovaries were exteriorized but not

removed. Surgical success was assessed at necropsy by measuring uterine weight.

Micro-computed tomography assessment

Animals were euthanized at 0, 4, 8, 26 and 52 wks of detraining (animal age = 21, 25, 29, 47

and 73 wks, respectively), and the loaded and non-loaded tibias dissected free and stored in

alcohol. A desktop micro-computerized tomography machine (SkyScan 1172 high-

resolution μCT; SkyScan, Kontich, Belgium) was used to acquire images of the midshaft
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and proximal tibia at 56 kVp, 167 μA, 158 ms integration time and 11.76 μm isotropic voxel

size. Beam hardening effects were reduced using a 0.5 mm aluminium filter and 20% beam

hardening correction. Cortical and trabecular bone properties were derived from the

midshaft and proximal tibia, respectively.

For cortical bone properties, a 0.5 mm thick volume of interest (VOI) of the tibial diaphysis

immediately proximal to the midshaft was analyzed to acquire average total (Tt.Ar, mm2),

cortical (Ct.Ar, mm2) and medullary area (Me.Ar, mm2), mean cortical thickness (Ct.Th,

mm), and minimum (IMIN, mm4) and maximum (IMAX, mm4) second moments of area.

Average areas were calculated as the VOI divided by the product of voxel height and the

number of slices.(27) Polar moment of inertia (IP, mm4) was calculated as the sum of IMIN

and IMAX. Bone mineral content (BMC, mg/mm) was obtained by exploiting the linear

relationship between Hounsfield Units and known densities from calcium hydroxyapatite

standards scanned using the same parameters as our bone samples. Cortical bone was

segmented from surrounding non-mineralized material using a threshold of 427 mg/cm3.

For trabecular bone properties, a 1 mm thick VOI was analyzed beginning 0.5 mm distal to

the proximal tibial growth plate. The VOI was within the secondary spongiosa and excluded

cortical/subcortical bone by using an irregular anatomic contour a few pixels inside the

endocortical boundary. Trabecular bone volume fraction (bone volume [BV]/total volume

[TV], %), number (Tb.N, /mm), thickness (Tb.Th, mm) and separation (Tb.Sp, mm) were

acquired, with a threshold of 264 mg/cm3 used to segment trabecular bone from surrounding

non-mineralized material.

Mechanical properties

Mechanical properties of the tibial midshaft were acquired as previously described.(28)

Bones were rehydrated overnight in saline, with 3 hours being reported as the minimum time

required to restore mechanical properties following dehydration.(29) Bones were positioned

anterior side up across supports with a span width of 11.2 mm and fixed with ~0.1 N static

preload on an electromechanical actuator (ElectroForce® 3200; Bose Corporation, Eden

Praire, MN). They were loaded in three-point bending with a crosshead speed of 0.2 mm/sec

until failure at their midshaft. Force and displacement data were collected every 0.01 sec

from which ultimate force (N), stiffness (N/mm) and post-yield energy to failure (mJ) were

obtained.

Histomorphometry

Calcein (10 mg/kg; Sigma Chemical Co., St. Louis, MO) and alizarin (15 mg/kg; Sigma

Chemical Co., St. Louis, MO) were given 12 and 5 days before euthanasia by intraperitoneal

injection to permit determination of bone formation rates. The previously broken bones were

embedded undecalcified in 99% methyl-methacrylate with 3% dibutyl phthalate (Sigma-

Aldrich, St. Louis, MO). Transverse thick (40-50 μm) sections were removed 1 mm distal to

the tibial midshaft using a diamond-embedded wire saw (Histo-saw; Delaware Diamond

Knives). A lead pencil mark placed prior to mechanical testing facilitated slice localization.

Sections were inspected to ensure the absence of mechanical testing artefacts and mounted

unstained to assess periosteal bone formation rate. Frontal plane, thin (4 μm) sections of the

Warden et al. Page 4

J Bone Miner Res. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



proximal tibia were taken using a microtome (Reichert-Jung 2050; Reichert-Jung,

Heidelberg, Germany), and mounted either unstained to enable determination of trabecular

bone formation rate or stained with tartrate-resistant acid phosphatase and counterstained

with hematoxylin (Sigma-Aldrich, Kit #387A-1KT, St. Louis, MO) to allow identification of

trabecular osteoclasts.

Sections were analyzed using Image-Pro Plus (Version 7.0; Media Cybernetics, Inc.,

Bethesda, MD) on a Leica DMI6000 inverted microscope (Leica Mikrosysteme Vertrieb

GmbH, Wetzlar, Germany). Dynamic parameters measured using the calcein and alizarin

labels in the unstained midshaft and proximal tibia sections included single-label perimeter

(sL.Pm), double-label area (dL.Ar) and perimeter (dL.Pm), and interlabel width (Ir.L.Wi).

The following were derived from the primary data: mineralizing surface (MS/BS=[1/2sL.Pm

+dL.Pm]/B.Pm; %), mineral apposition rate (MAR=mean Ir.L.Wi/interlabel period; μm/d),

and bone formation rate (BFR/BS=MARxMS/BSx3.65; μm3/μm2/yr). A biological lower

limit for MAR of 0.3 μm/d was used in sections lacking double labels (n=8 sections).(30) The

region of interest within the proximal tibia consisted of a 1 mm2 box positioned 1 mm distal

from the growth plate within the secondary spongiosa. Bone resorption was determined from

stained sections of the proximal tibia by counting the number of bone-adherent,

multinucleate, tartrate-resistant acid phosphatase positive cells (osteoclasts) within 1 mm2 of

the secondary spongiosa and normalizing to bone surface (Oc.N/BS).

Statistics

Analyses were performed with IBM SPSS Statistics (v20.0; SPSS Inc., Chicago, IL), and

were two-tailed with a level of significance set at 0.05. Data were assessed for normality and

homogeneity of variance using Shapiro-Wilks and Levene tests, respectively. Load (loaded

vs. non-loaded) and surgical (SHAM vs. OVX) effects on body mass in the 0 wks detraining

and 4, 8, 26 and 52 wks detraining groups were assessed using paired and unpaired t-tests,

respectively. Two-way, one-repeated-measure analyses of covariance (ANCOVA) were

used to assess micro-CT and mechanical testing outcomes in the 4, 8, 26 and 52 wks

detraining groups, with loading (loaded vs. non-loaded) and surgical (SHAM vs. OVX)

groups as the within- and between-animal independent variables, respectively. Body mass

was used as the covariate. Bone histomorphometric outcomes were similarly assessed in the

4, 8, 26 and 52 wks detraining groups with two-way, one-repeated-measure analyses of

variance (ANOVA).

RESULTS

Animals

Twenty animals (8.9%) were lost due to anesthesia complications (n = 6), fractures during

mechanical loading (n = 5) or unknown/natural causes (n = 9). Data from these animals were

excluded from analyses. The final group sizes for the 0, 4, 8, 26 and 52 wks detraining

groups were 25, 46 (SHAM, n = 22; OVX, n = 24), 45 (SHAM, n = 22; OVX, n = 23), 46

(SHAM, n = 24; OVX, n = 22) and 43 (SHAM, n = 22; OVX, n = 21), respectively. Body

mass was greater (Fig. 1) and uterine weight was less (data not shown) in OVX animals

compared to SHAM animals in the 4, 8, 26 and 52 wks detraining groups (all p < 0.05).
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Long-term benefits of loading on cortical bone properties

The loading program altered tibial midshaft cortical bone properties, as assessed in the 0

wks detraining group. In this group, the loaded tibia had 14.1%, 8.3% and 14.1% greater

BMC, Tt.Ar and Ct.Ar compared to the contralateral non-loaded tibia, respectively (all p <

0.001, Fig. 2A-D). There was no effect of loading on Me.Ar (p = 0.52, Fig. 2E). The net

result was 20.0-23.1% greater Ct.Th (Fig. 2F), IP (Fig. 2G) and mechanical properties (Fig.

3) in loaded vs. nonloaded tibias (all p < 0.001). The greater IP resulted from adaptation in

orthogonal planes, as indicated by both greater IMAX and IMIN in loaded tibias

(Supplemental Fig. 1). There was no effect of loading on periosteal or endocortical MS/BS,

MAR or BFR/BS in the 0 wks detraining group (all p > 0.05, Fig. 4 and Supplemental Fig.

2), likely as a result of fluorescent labels being administered towards the completion of the

loading program by which time accommodation to the loading stimulus had taken place.(31)

Loading induced lamellar rather than woven bone formation in each animal, consistent with

our preliminary study utilizing the mouse tibial axial compression model.(26)

There were no interactions between loading and surgery in either the 4, 8, 26 or 52 wks

detraining groups indicating surgery did not influence the maintenance of the cortical bone

benefits of loading (all p = 0.12-0.99). Surgery altered cortical bone properties in early (4

and 8 wks) detraining groups. OVX mice in the 4 and 8 wks detraining groups had greater

Me.Ar compared to SHAM mice indicating surgically-induced endocortical bone loss (all p

< 0.01, Fig. 2E). Reduced endocortical MS/BS, MAR and BFR/BS contributed to the net

loss of bone on this surface in the 4 and 8 wks detraining groups (all p < 0.05, Fig. 4A and

Supplemental Fig. 2A,B). Endocortical bone loss in OVX animals in the 4 wks detraining

group was coupled with greater periosteal MS/BS, MAR and BFR/BS (all p < 0.05, Fig. 4B

and Supplemental Fig. 2C,D) resulting in greater Tt.Ar (p < 0.01, Fig. 2C). However,

periosteal expansion was unable to maintain Ct.Th which was lower in OVX mice in both

the 4 and 8 wks detraining groups (all p < 0.01, Fig. 2F) or BMC which was lower in OVX

mice in the 8 wks detraining group (p = 0.04, Fig. 2B). The net result was lower ultimate

force and energy to failure (all p ≤ 0.04, Fig. 3A,B and Supplemental Fig. 3) in tibias from

OVX mice in the 4, 8 and 26 wks detaining groups. Tibias from OVX mice also had less

stiffness in the 8 wks detraining group than tibias from SHAM mice (p < 0.01, Fig. 3C). In

the 52 wks detraining group, the only differences in cortical bone properties between

surgery groups were less energy to failure (p = 0.02, Supplemental Fig. 3) and post-yield

energy to failure (p < 0.05, Fig. 3D).

Loading completed when younger had short-term benefits on tibial midshaft BMC, Ct.Ar

and Ct.Th, with loaded tibias from animals in the 4 and 8 wks detraining groups having

greater BMC, Ct.Ar and Ct.Th relative to contralateral non-loaded tibias (all p ≤ 0.001, Fig.

2B,D,F). However, loading benefits on BMC, Ct.Ar and Ct.Th did not persist in animals in

the 26 and 52 wks detraining groups (all p = 0.09-0.81, Fig. 2B,D,F). Contributing to the

eventual loss of the loading benefits on BMC, Ct.Ar and Ct.Th was a net loss of bone on the

endocortical surface (evident by 7.1-18.1% greater Me.Ar in loaded tibias in each detraining

time point group) (all p < 0.001, Fig. 2E) and lower periosteal MS/BS, MAR and BFR/BS in

loaded tibias in the 4 wks detraining group (p < 0.001, Fig. 4B and Supplemental Fig.

2C,D). Reduced endocortical MS/BS, MAR and BFR/BS contributed to the net loss of bone
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on the endocortical surface in the 4 wks detraining group (all p < 0.05, Fig. 4A and

Supplemental Fig. 2A,B). The lower periosteal expansion in loaded tibias did not persist in

animals in the 8, 26 and 52 wks detraining groups and did not influence the maintenance of

the loading benefit on Tt.Ar. Tt.Ar in loaded tibias was greater than in non-loaded tibias

within animals in the 4, 8, 26 and 52 wks detraining groups (all p < 0.001, Fig. 2C), and

contributed to persistent benefits of loading on IMAX, IMIN, and IP (all p < 0.001, Fig. 2G

and Supplemental Fig. 1) and mechanical properties (all p ≤ 0.05, Fig. 3 and Supplemental

Fig. 3).

Long-term benefits of loading on trabecular bone properties

The loading program had the expected effects on proximal tibia trabecular bone properties,

with loaded tibias in the 0 wks detraining group having 17.4% greater BV/TV compared to

the contralateral non-loaded tibia (all p = 0.001, Fig. 5A,B). The greater BV/TV in loaded

tibias was due to greater gain in BV (+51.7% vs. non-loaded) relative to the loading-induced

increase in TV (+28.4% vs. non-loaded) (Supplemental Fig. 4), and resulted in 13.1%

greater Tb.Th and 6.4% greater Tb.N (all p ≤ 0.02, Fig. 5C,D). There was no effect of

loading on Tb.Sp (p = 0.87, Fig. 5E), or trabecular MS/BS, MAR, BFR/BS or Oc.N/BS (all

p = 0.16-0.33, Fig. 6 and Supplemental Fig. 5) in the 0 wks detraining group. The absence of

a measurable loading effect on trabecular MS/BS, MAR, BFR/BS or Oc.N/BS again likely

resulted from these measures being performed at a time by which accommodation to the

loading stimulus had already taken place.(31)

There were no interactions between loading and surgery in either the 4, 8, 26 or 52 wks

detraining groups indicating surgery did not influence the maintenance of the trabecular

bone benefits of loading (all p = 0.20-0.94). Surgery altered trabecular bone properties in

each detraining group, with BV/TV being lower in OVX mice in the 4, 8, 26 and 52 wks

detraining groups (all p < 0.03, Fig. 5B). The lower BV/TV in OVX animals was due to a

decrease in BV at each detraining time point and increase in TV in the 4 and 8 wks

detraining groups (Supplemental Fig. 4), and resulted in less Tb.N (all p ≤ 0.05, Fig. 5D)

rather than less Tb.Th (all p = 0.13-0.38, Fig. 5C). The lower BV/TV and Tb.N was caused

by lower trabecular MAR and BFR/BS (p ≤ 0.05, Fig. 6A and Supplemental Fig. 5B) and

increased trabecular Oc.N/BS (p < 0.05, Fig. 6B) in OVX animals at early (4 and 8 wks)

detraining time points.

Loading completed when younger had long-term benefits on proximal tibia trabecular bone

properties. Loaded tibias in each of the 4, 8, 26 and 52 wks detraining groups had greater

BV/TV, Tb.Th and Tb.N, and decreased Tb.Sp than in their non-loaded tibias (all p < 0.05,

Fig. 5), with the loading-induced increase in both BV and TV persisting in each detraining

time group (all P < 0.05, Supplemental Fig. 4). There was lower trabecular BFR/BS in

loaded tibias in the 4 wks detraining group (p = 0.04, Fig. 6A), but this did not persist in

animals in the 8, 26 and 52 wks detraining groups and the aforementioned results indicate

that the temporary decrease in trabecular BFR/BS did not influence the maintenance of the

loading benefit on trabecular bone morphology. There was no effect of loading on trabecular

Oc.N/BS in any detraining time point group (all p = 0.55-0.95, Fig. 6B).
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DISCUSSION

The most novel findings of the current study are the long-term maintenance of loading-

induced benefits on trabecular bone properties and the lack of an effect of an OVX-induced

menopause on their maintenance. Unilateral extrinsic loading of the mouse tibia for 4 wks

induced a 17.4% increase in BV/TV within the proximal tibia due to an increase in the

thickness of preexisting trabeculae and the addition of new trabeculae. These trabecular

bone benefits persisted for 52 wks after cessation of elevated skeletal loading (until animal

age = 73 wks), with loaded tibias having greater BV/TV, Tb.Th and Tb.N and less Tb.Sp

than contralateral non-loaded tibiae at each detraining time point assessed. OVX-induced

menopause did not influence the maintenance of trabecular bone benefits, as evident by the

absence of statistical interactions between loading and surgery groups. However, OVX did

have independent negative effects on BV/TV and Tb.N at each assessment time point

following surgery. These cumulative data suggest elevated skeletal loading when young

provided long-term benefits to trabecular bone properties that were not influenced by

menopause, with loading essentially preparing the skeleton to offset the trabecular bone

changes associated with OVX.

The long-term maintenance of loading-induced benefits on trabecular bone properties

contrasts the previous findings of Fujie et al.(32) and Iwamoto et al.(11) Both groups of

investigators explored the lasting benefit of treadmill running on trabecular bone properties

within the proximal tibia of rats. Although the study by Fujie et al.(32) was underpowered to

detect measureable loading and detraining effects on trabecular morphology due to small

group sizes (n = 5), Iwamoto et al.(11) reported the BV/TV benefit of treadmill running for 8

wks was subsequently lost with 4 wk of detraining. However, the later study was limited by

the use of two-dimensional analyses of histological sections to assess trabecular bone

morphology and the use of a between-animal study design to determine group differences.

In contrast, the current study utilized more sensitive three-dimensional measures of

trabecular morphology obtained using high-resolution micro-CT and took advantage of a

unilateral skeletal adaptation model wherein the maintenance of loading benefits could be

explored within-animal.

The maintenance of loading-induced benefits on trabecular bone properties is intriguing

considering the concomitant loss of the cortical bone mass benefits of loading within the

same bone. Elevated loading of the tibia when young enhanced midshaft tibia cortical BMC;

however, the BMC benefits were no longer present 26 wks after return to habitual loading

(restriction to home-cage activities). The loss of loading-induced cortical bone mass benefits

resulted from a temporary decrease in periosteal bone formation combined with an increase

in medullary expansion (as indicated by increased medullary area). The increase in

medullary area indicates a net loss of bone on the endocortical surface, with the discordant

endocortical and trabecular bone changes following return to habitual loading levels

suggesting the bone cells in the two compartments are independently regulated.

The reduced periosteal bone formation and net loss of bone on the endocortical surface

during detraining in loaded tibias ultimately contributed to a loss of the Ct.Ar and Ct.Th

benefits of loading by 26 wks detraining. However, periosteal bone formation in loaded
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tibias returned to contralateral non-loaded levels by 8 wks detraining indicating loaded tibias

grew radially with age following the suppression of bone formation in the initial weeks

following loading program completion. The persistent radial growth in loaded tibias, despite

loaded tibias initially being larger and stronger, suggests radial bone growth during aging is

not entirely driven by a need to maintain bone bending strength in response to the

mechanical decay associated with age-related endocortical bone loss. However, the addition

of new periosteal bone during aging did maintain cortical thickness within loaded tibias at

equivalent levels as in non-loaded tibias which would contribute to maintaining cortical

compressive strength and the ability to resist buckling (assuming equivalent bone material

properties between loaded and non-loaded tibias).

Ultimately, the persistent radial growth in loaded tibias in the current study enabled the bone

size benefits of mechanical loading completed when young to persist long-term. For

instance, loaded tibias had 8.0% greater midshaft tibia Tt.Ar compared to non-loaded tibias

in the 52 wk detraining group, which matches the 8.1% difference observed in 0 wk

detraining group (i.e. at the completion of the loading program). As cortical bone

mechanical properties are proportional to the fourth power of material distance from the

neutral axis,(33) the larger size of loaded tibias contributed to increased IP and ultimate force

at each detraining time point. These data indicate elevated mechanical loading completed

when young did not have lasting benefits on BMC, but had benefits on cortical bone size

and strength that lasted for a period 13 times the length of the initial loading program.

The discordant long-term maintenance of the cortical bone mass and size benefits of

mechanical loading completed when young clarifies our earlier findings. In our previous

studies,(15, 18) we observed contrasting lifelong maintenance of mechanical loading benefits

on bone mass when using the forearm axial compression loading model in rats. Possible

reasons for our previous conflicting findings may relate to the investigation of the rat ulna,

as well as the use of imaging modalities with differing resolutions to assess bone properties

(dual-energy x-ray absorptiometry vs. peripheral quantitative computed tomography). The

rat ulna shows a robust periosteal response to mechanical loading; however, it possesses a

negligible medullary cavity and, consequently surface available for both age- and OVX-

related endocortical bone loss. The current study assessed a skeletal site with a larger

medullary-to-cortical area ratio than the rat ulna and utilized high-resolution micro-CT to

confirm the cortical bone mass, but not size and strength benefits of mechanical loading

completed when young are eventually lost with aging.

In addition to demonstrating lasting benefits of mechanical loading on bone strength, the

current study observed long-term benefits on post-yield mechanical properties. Loaded tibias

in the current study had greater post-yield energy to failure at each time point assessed

suggesting loading completed when young increased ductility and reduced brittleness. This

finding contrasts our previous observations of reduced post-yield displacement and energy

in the rat ulna when assessed 92-94 weeks post loading completion.(15, 18) Reasons for the

increased post-yield energy in loaded tibias in the current study and the disparate findings

between our studies were not explored; however, they may relate to the age the animals

were loaded (16 wks vs. 4-5 wks of age), skeletal site loaded (tibia vs. ulna), method of
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mechanical testing (3-point bending vs. axial compression) and length of detraining (52 wks.

vs. 92-94 wks).

As with our trabecular bone findings, the lasting benefits of skeletal loading were

maintained in cortical bone independent of a surgically-induced menopause. There were no

statistical interactions between the loading and surgical intervention groups, indicating the

cortical bone benefits of loading were equally maintained in SHAM and OVX animals. This

observation supports those of Umemura et al.(34) who showed no effect of OVX on the

maintenance of jump training-induced changes in tibial bone properties in rats exercised for

8 weeks and subsequently detrained for 6 months (until age = 11 months). Similarly, the

current findings also confirm our previous work wherein OVX had no effect on the

maintenance of loading-induced cortical bone benefits in rats extrinsically loaded for 6 wks

beginning at 4 wks of age and then followed lifelong until 2 years of age.(18)

Although OVX did not influence the maintenance of the cortical bone benefits of

mechanical loading completed when young, it did have independent negative effects on

cortical bone properties at early time points following surgery. OVX in rodents generates a

cortical bone modeling drift whereby there is elevated endocortical bone loss and periosteal

apposition,(35-38) as occurs post-menopause in humans.(17) Endocortical bone loss was

evident in the current study by increased midshaft tibia Me.Ar and proximal tibia TV in

OVX animals within the 4 and 8 wks detraining groups, while periosteal apposition was

evident by OVX animals in the 4 wks detraining group having greater midshaft tibia

periosteal bone formation and Tt.Ar than SHAM animals. There was evidently more net

bone lost endocortically than gained periosteally in the initial weeks following surgery as

tibias from OVX animals had less BMC, Ct.Ar and Ct.Th, and subsequently mechanical

properties than tibias from SHAM animals. Interestingly, there were no surgery effects on

cortical bone properties in the 26 and 52 wks detraining groups suggesting that the cortical

bone effects of OVX were temporary. In the end, the independent negative effect of OVX on

cortical bone properties supports the trabecular bone findings that skeletal loading should be

performed when young to offset bone changes associated with menopause later in life.

The current study has a number of strengths, including the: 1) use of a within-animal study

design which enabled the maintenance of skeletal loading benefits to be explored while

controlling for the influence of systemic factors; 2) investigation of the maintenance of

loading-induced cortical and trabecular bone benefits within a single adapted element; 3) use

of relatively large group sizes (n = 21-24 specimens per group) which enhanced statistical

power to identify interactive effects between loading and subsequent surgery, and 4)

exploration of the maintenance of loading effects for a relatively lengthy detraining period

(up to 1 year). The study also has a number of limitations. The mechanical loading model

utilized does not truly represent physical activity as it does not require physical exertion on

the behalf of the animal. The long-term maintenance of loading effects on cortical bone may

be attributable to species selection, with rodent cortical bone lacking the secondary

remodeling of Haversian canals required to remodel and remove excess cortical bone after

loading. The long-term maintenance of loading-induced benefits on trabecular bone may

have been influenced by osteoarthritic joint changes associated with the mouse tibial axial

compression loading model;(39, 40) however, any arthritis-induced lameness within the
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loaded leg would have potentiated loss of loading-induced benefits. The maintained loading-

induced benefits on trabecular bone morphology may not contribute to enhanced mechanical

properties as BV/TV declined with advancing age and was negligible (<4%) in both loaded

and non-loaded tibias in the 52 wks detraining group.

In summary, this study found elevated mechanical loading of the skeleton completed when

young had lasting benefits on cortical bone size and strength and trabecular bone properties

that persisted independent of a surgically-induced menopause. These findings suggest that

skeletal loading associated with physical activity when young may provide long-term

benefits to fracture risk by preparing the skeleton to offset the cortical and trabecular bone

changes associated with aging and estrogen depletion. Whether these effects translate to

humans needs to be shown, but in the interim individuals should be encouraged to perform

load-bearing physical activity when young to potentiate long-term bone health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
The effect of surgical intervention on body mass. OVX animals had greater body mass than SHAM animals in the 4, 8, 26 and

52 wks detraining groups (*p < 0.001). Data represent mean ± SD.
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Fig. 2.
The effect of loading and surgery at select detraining time points on the midshaft tibia. A) Representative micro-CT

tomographic images of the midshaft tibia in non-loaded and loaded bones from the 0 and 52 wks detraining groups. Loading

increased total (Tt.Ar) and cortical (Ct.Ar) areas, and cortical thickness (Ct.Th), as evident in the 0 wks detraining group. The

loading-induced increase in Tt.Ar persisted in the 52 wks detraining group in both SHAM and OVX animals. B) Bone mineral

content (BMC); C) Tt.Ar; D) Ct.Ar; E) medullary area (Me.Ar); F) Ct.Th and G) polar moment of inertia (IP) at the midshaft

tibia as select detraining time points. Loading increased BMC, Tt.Ar, Ct.Ar, Ct.Th and IP, as assessed in the 0 wks detraining

group (*p < 0.05). There were no statistical interactions between loading and surgery in any detraining time point group. Loaded
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tibias had more BMC, Ct.Ar and Ct.Th in the 4 and 8 wks detraining groups and more Tt.Ar, Me.Ar and IP in each detraining

time point group than non-loaded tibias (†p < 0.05 for loading main effect). OVX animals had more Tt.Ar and Me.Ar, and less

Ct.Th than SHAM animals in the 4 wks detraining group, and less BMC, Ct.Ar and Ct.Th, and more Me.Ar than SHAM animals

in the 8 wks detraining group, (‡p < 0.05 for surgery main effect). Data represent body mass corrected means ± SD.
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Fig. 3.
The effect of loading and surgery at select detraining time points on midshaft tibia mechanical properties. A) Representative

force vs. displacement curves for a pair of loaded and non-loaded tibias from the 0 wks detraining group. Loading increased: A)

ultimate force (peak of the curve on the y-axis in panel A); C) stiffness (slope of the linear portion of the curve in panel A), and;

D) post-yield energy to failure (area under curve between yield point and failure in panel A), as assessed in the 0 wks detraining

group (*p < 0.05). There were no statistical interactions between loading and surgery in any detraining time point group for any

of the properties assessed. Loaded tibias had greater ultimate force, stiffness and post-yield energy to failure than non-loaded

tibias in each detraining time point group (†p < 0.05 for loading main effect). OVX animals had less ultimate force in the 4, 8

and 26 wks detraining groups, less stiffness in the 8 wks detraining group, and less post-yield energy to failure in the 26 and 52

wks detraining groups than SHAM animals (‡p < 0.05 for surgery main effect). Data represent body mass corrected means ±

SD.
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Fig. 4.
The effect of loading and surgery at select detraining time points on midshaft tibial: A) endocortical and B) periosteal bone

formation rate (BFR/BS). There were no statistical interactions between loading and surgery in any detraining time point group.

Loaded tibias had less endocortical and periosteal BFR/BS than non-loaded tibias in the 4 wks detraining group (†p < 0.001 for

loading main effect). OVX animals had less endocortical and more periosteal BFR/BS in the 4 wks detraining group, and less

endocortical and periosteal BFR/BS in the 8 wks detraining groups than SHAM animals (‡p < 0.05 for surgery main effect).

Data represent means ± SD.
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Fig. 5.
The effect of loading and surgery at select detraining time points on proximal tibial trabecular: A) bone volume fraction (bone

volume [BV]/tissue volume [TV]); B) thickness (Tb.Th); C) number (Tb.N) and D) separation (Tb.Sp). Loading increased

BV/TV, Tb.Th and Tb.N (*p < 0.05). There were no statistical interactions between loading and surgery in any detraining time

point group. Loaded tibias had more BV/TV, Tb.Th and Tb.N, and less Tb.Sp than non-loaded tibias in each detraining time

point group (†p < 0.04 for loading main effect). OVX animals had less BV/TV and Tb.N than SHAM animals in each detraining

time point group, and more Tb.Sp in the 4 and 8 wks detraining groups (‡p < 0.05 for surgery main effect). Data represent body

mass corrected means ± SD.
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Fig. 6.
The effect of loading and surgery at select detraining time points on proximal tibial trabecular: A) bone formation rate (BFR/BS)

and B) osteoclast number (Oc.N/BS). There were no statistical interactions between loading and surgery in any detraining time

point group. Loaded tibias had less BFR/BS than non-loaded tibias in the 4 wks detraining group (†p = 0.04 for loading main

effect). OVX animals had less BFR/BS and more Oc.N/BS than SHAM animals in the 4 and 8 wks detraining groups (‡p < 0.05

for surgery main effect). Data represent means ± SD.
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