10 research outputs found

    Effect of fingolimod on health-related quality of life in paediatric patients with multiple sclerosis: results from the phase 3 PARADIG MS Study

    Get PDF
    Background In the PARADIG MS Study, fingolimod demonstrated superior efficacy versus interferon (IFN) β-1a and comparable overall incidence of adverse events but slightly higher rate of serious adverse events in patients with paediatric-onset multiple sclerosis (PoMS). Here, we report the health-related quality of life (HRQoL) outcomes from PARADIG MS . Methods Patients with PoMS (N=215; aged 10–<18 years) were randomised to once-daily oral fingolimod (N=107) or once-weekly intramuscular IFN β-1a (N=108). HRQoL outcomes were assessed using the 23-item Pediatric Quality of Life (PedsQL) scale that comprises Physical and Psychosocial Health Summary Scores (including Emotional, Social and School Functioning). A post hoc inferential analysis evaluated changes in self-reported or parent-reported PedsQL scores from baseline up to 2 years between treatment groups using an analysis of covariance model. Results Treatment with fingolimod showed improvements versus IFN β-1a on the PedsQL scale in both the self-reported and parent-reported Total Scale Scores (4.66 vs −1.16, p≤0.001 and 2.71 vs −1.02, p≤0.05, respectively). The proportion of patients achieving a clinically meaningful improvement in the PedsQL Total Scale Score was two times higher with fingolimod versus IFN β-1a per the self-reported scores (47.5% vs 24.2%, p=0.001), and fingolimod was favoured versus IFN β-1a per the parent-reported scores (37.8% vs 24.7%, p=non-significant). Group differences in self-reported Total Scale Scores in favour of fingolimod were most pronounced among patients who had ≥2 relapses in the year prior to study entry or who showed improving or stable Expanded Disability Status Scale scores during the study. Conclusion Fingolimod improved HRQoL compared with IFN β-1a in patients with PoMS as evidenced by the self-reported and parent-reported PedsQL scores

    Evaluation of Novel Enhancer Compounds in Gentamicin-Mediated Readthrough of Nonsense Mutations in Rett Syndrome

    No full text
    Rett syndrome (RTT), a severe X-linked neurodevelopmental disorder, is primarily caused by mutations in the methyl CpG binding protein 2 gene (MECP2). Over 35% RTT patients carry nonsense mutation in MECP2, making it a suitable candidate disease for nonsense suppression therapy. In our previous study, gentamicin was found to induce readthrough of MECP2 nonsense mutations with modest efficiency. Given the recent discovery of readthrough enhancers, CDX compounds, we herein evaluated the potentiation effect of CDX5-1, CDX5-288, and CDX6-180 on gentamicin-mediated readthrough efficiency in transfected HeLa cell lines bearing the four most common MECP2 nonsense mutations. We showed that all three CDX compounds potentiated gentamicin-mediated readthrough and increased full-length MeCP2 protein levels in cells expressing the R168X, R255X, R270X, and R294X nonsense mutations. Among all three CDX compounds, CDX5-288 was the most potent enhancer and enabled the use of reduced doses of gentamicin, thus mitigating the toxicity. Furthermore, we successfully demonstrated the upregulation of full-length Mecp2 protein expression in fibroblasts derived from Mecp2R255X/Y mice through combinatorial treatment. Taken together, findings demonstrate the feasibility of this combinatorial approach to nonsense suppression therapy for a subset of RTT patients.Medicine, Faculty ofNon UBCBiochemistry and Molecular Biology, Department ofReviewedFacultyResearche

    A novel remitting leukodystrophy associated with a variant in FBP2

    Get PDF
    Leukodystrophies are genetic disorders of cerebral white matter that almost exclusively have a progressive disease course. We became aware of three members of a family with a disorder characterized by a sudden loss of all previously acquired abilities around 1 year of age followed by almost complete recovery within 2 years. Cerebral MR1 and myelin sensitive imaging showed a pronounced demyelination that progressed for several months despite signs of clinical improvement and was followed by remyelination. Exome sequencing did not-identify any mutations in known leukodystrophy genes but revealed a heterozygous variant in the FBP2 gene, c.343G>A, p. Val115Met, shared by the affected family members. Cerebral MRI of other family members demonstrated similar white matter abnormalities in all carriers of the variant in FBP2. The FBP2 gene codes for muscle fructose 1,6-bisphosphatase, an enzyme involved in gluconeogenesis that is highly expressed in brain tissue. Biochemical analysis showed that the variant has a dominant negative effect on enzymatic activity, substrate affinity, cooperativity and thermal stability. Moreover, it also affects the non-canonical functions of muscle fructose 1,6-bisphosphatase involved in mitochondrial protection and regulation of several nuclear processes. In patients' fibroblasts, muscle fructose 1,6-bisphosphatase shows no colocalization with mitochondria and nuclei leading to increased reactive oxygen species production and a disturbed mitochondrial network. In conclusion, the results of this study indicate that the variant in FBP2 disturbs cerebral energy metabolism and is associated with a novel remitting leukodystrophy

    Activating de novo mutations in NFE2L2 encoding NRF2 cause a multisystem disorder

    Get PDF
    Transcription factor NRF2, encoded by NFE2L2, is the master regulator of defense against stress in mammalian cells. Somatic mutations of NFE2L2 leading to NRF2 accumulation promote cell survival and drug resistance in cancer cells. Here we show that the same mutations as inborn de novo mutations cause an early onset multisystem disorder with failure to thrive, immunodeficiency and neurological symptoms. NRF2 accumulation leads to widespread misregulation of gene expression and an imbalance in cytosolic redox balance. The unique combination of white matter lesions, hypohomocysteinaemia and increased G-6-P-dehydrogenase activity will facilitate early diagnosis and therapeutic intervention of this novel disorder

    Mutations in TAF8 cause a neurodegenerative disorder

    No full text
    TAF8 is part of the transcription factor II D complex, composed of the TATA-binding protein and 13 TATA-binding protein-associated factors (TAFs). Transcription factor II D is the first general transcription factor recruited at promoters to assemble the RNA polymerase II preinitiation complex. So far disorders related to variants in 5 of the 13 subunits of human transcription factor II D have been described. Recently, a child with a homozygous c.781-1G>A mutation in TAF8 has been reported. Here we describe seven further patients with mutations in TAF8 and thereby confirm the TAF8 related disorder. In two sibling patients, we identified two novel compound heterozygous TAF8 splice site mutations, c.45+4A > G and c.489G>A, which cause aberrant splicing as well as reduced expression and mislocalization of TAF8. In five further patients, the previously described c.781-1G > A mutation was present on both alleles. The clinical phenotype associated with the different TAF8 mutations is characterized by severe psychomotor retardation with almost absent development, feeding problems, microcephaly, growth retardation, spasticity and epilepsy. Cerebral imaging showed hypomyelination, a thin corpus callosum and brain atrophy. Moreover, repeated imaging in the sibling pair demonstrated progressive cerebral and cerebellar atrophy. Consistently, reduced N-acetylaspartate, a marker of neuronal viability, was observed on magnetic resonance spectroscopy. Further review of the literature shows that mutations causing a reduced expression of transcription factor II D subunits have an overlapping phenotype of microcephaly, developmental delay and intellectual disability. Although transcription factor II D plays an important role in RNA polymerase II transcription in all cells and tissues, the symptoms associated with such defects are almost exclusively neurological. This might indicate a specific vulnerability of neuronal tissue to widespread deregulation of gene expression as also seen in Rett syndrome or Cornelia de Lange syndrome
    corecore