71 research outputs found

    Traveling waves and pattern formation for spatially discrete bistable reaction-diffusion equations (survey)

    Get PDF
    Analysis and Stochastic

    Loss of Octarepeats in Two Processed Prion Pseudogenes in the Red Squirrel, Sciurus vulgaris

    Get PDF
    The N-terminal region of the mammalian prion protein (PrP) contains an β€˜octapeptide’ repeat which is involved in copper binding. This eight- or nine-residue peptide is repeated four to seven times, depending on the species, and polymorphisms in repeat number do occur. Alleles with three repeats are very rare in humans and goats, and deduced PrP sequences with two repeats have only been reported in two lemur species and in the red squirrel, Sciurus vulgaris. We here describe that the red squirrel two-repeat PrP sequence actually represents a retroposed pseudogene, and that an additional and older processed pseudogene with three repeats also occurs in this species as well as in ground squirrels. We argue that repeat numbers may tend to contract rather than expand in prion retropseudogenes, and that functional prion genes with two repeats may not be viable

    Lamin B1 regulates somatic mutations and progression of B-cell malignancies

    Get PDF
    Somatic hypermutation (SHM) is a pivotal process in adaptive immunity that occurs in the germinal centre and allows B cells to change their primary DNA sequence and diversify their antigen receptors. Here, we report that genome binding of Lamin B1, a component of the nuclear envelope involved in epigenetic chromatin regulation, is reduced during B-cell activation and formation of lymphoid germinal centres. Chromatin immunoprecipitation-Seq analysis showed that kappa and heavy variable immunoglobulin domains were released from the Lamin B1 suppressive environment when SHM was induced in B cells. RNA interference-mediated reduction of Lamin B1 resulted in spontaneous SHM as well as kappa-light chain aberrant surface expression. Finally, Lamin B1 expression level correlated with progression-free and overall survival in chronic lymphocytic leukaemia, and was strongly involved in the transformation of follicular lymphoma. In summary, here we report that Lamin B1 is a negative epigenetic regulator of SHM in normal B-cells and a 'mutational gatekeeper', suppressing the aberrant mutations that drive lymphoid malignancy

    Divergence of Mammalian Higher Order Chromatin Structure Is Associated with Developmental Loci

    Get PDF
    Several recent studies have examined different aspects of mammalian higher order chromatin structure - replication timing, lamina association and Hi-C inter-locus interactions - and have suggested that most of these features of genome organisation are conserved over evolution. However, the extent of evolutionary divergence in higher order structure has not been rigorously measured across the mammalian genome, and until now little has been known about the characteristics of any divergent loci present. Here, we generate a dataset combining multiple measurements of chromatin structure and organisation over many embryonic cell types for both human and mouse that, for the first time, allows a comprehensive assessment of the extent of structural divergence between mammalian genomes. Comparison of orthologous regions confirms that all measurable facets of higher order structure are conserved between human and mouse, across the vast majority of the detectably orthologous genome. This broad similarity is observed in spite of many loci possessing cell type specific structures. However, we also identify hundreds of regions (from 100 Kb to 2.7 Mb in size) showing consistent evidence of divergence between these species, constituting at least 10% of the orthologous mammalian genome and encompassing many hundreds of human and mouse genes. These regions show unusual shifts in human GC content, are unevenly distributed across both genomes, and are enriched in human subtelomeric regions. Divergent regions are also relatively enriched for genes showing divergent expression patterns between human and mouse ES cells, implying these regions cause divergent regulation. Particular divergent loci are strikingly enriched in genes implicated in vertebrate development, suggesting important roles for structural divergence in the evolution of mammalian developmental programmes. These data suggest that, though relatively rare in the mammalian genome, divergence in higher order chromatin structure has played important roles during evolution

    The Insulator Protein SU(HW) Fine-Tunes Nuclear Lamina Interactions of the Drosophila Genome

    Get PDF
    Specific interactions of the genome with the nuclear lamina (NL) are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs) in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that the Drosophila genome is also organized in discrete LADs, which are about five times smaller than human LADs but contain on average a similar number of genes. Systematic comparison to new and published insulator binding maps shows that only SU(HW) binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW) weakens genome – NL interactions through a local antagonistic effect, but we did not obtain evidence that it is essential for border formation. Our results provide insights into the evolution of LAD organization and identify SU(HW) as a fine-tuner of genome – NL interactions

    The 4D nucleome project

    Get PDF
    • …
    corecore