42 research outputs found

    Bis(6-diphenylphosphino-acenaphth-5-yl)sulfoxide. A New Ligand for Late Transition Metal Complexes

    Get PDF
    The synthesis of the new ligand bis(6-diphenylphosphinoacenaphth-5-yl)sulfoxide, [6-(Ph2P)-5-Ace-6](2)-SO (1), is presented along with six transition metal complexes thereof, namely,1 center dot MCl (M = Rh, Cu, Ag, Au) and1 center dot MCl2(M = Ni, Pd). Within these novel complexes, close metal-sulfur distances are observed and the nature of the M-S coordination, as well as the response of the(+)S-O(-)bond, are investigated in detail with a set of spectroscopic, crystallographic and real-space bonding indicators

    Peri-substituted phosphorus-tellurium systems – an experimental and theoretical investigation of the P∙∙∙Te through-space interaction

    Get PDF
    The authors are thankful to the EPSRC, the EPSRC National Mass Spectrometry Service Centre (NMSSC) Swansea, the School of Chemistry St. Andrews, and EaStCHEM for support.A series of peri-substituted phosphorus-tellurium systems R’Te–Acenap–PR2 (R’ = Ph, p-An, Nap, Mes, Tip; R = iPr, Ph) exhibiting large “through space” spin-spin coupling constants and the “onset” of three-centre four-electron type interactions are presented. The influence of the substituents at the phosphorus and tellurium atoms as well as their behavior upon oxidation (with S, Se) or metal-coordination (Pt, Au) is discussed using NMR spectroscopy, single crystal X-ray diffraction, and advanced DFT studies including NBO, AIM and ELI-D analyses.PostprintPeer reviewe

    Lattice response to the radiation damage of molecular crystals: radiation-induced versus thermal expansivity.

    Get PDF
    The interaction of intense synchrotron radiation with molecular crystals frequently modifies the crystal structure by breaking bonds, producing fragments and, hence, inducing disorder. Here, a second-rank tensor of radiation-induced lattice strain is proposed to characterize the structural susceptibility to radiation. Quantitative estimates are derived using a linear response approximation from experimental data collected on three materials Hg(NO3)2(PPh3)2, Hg(CN)2(PPh3)2 and BiPh3 [PPh3 = triphenylphosphine, P(C6H5)3; Ph = phenyl, C6H5], and are compared with the corresponding thermal expansivities. The associated eigenvalues and eigenvectors show that the two tensors are not the same and therefore probe truly different structural responses. The tensor of radiative expansion serves as a measure of the susceptibility of crystal structures to radiation damage

    Bis(6-Diphenylphosphinoacenaphth-5-yl)Telluride as a Ligand toward Manganese and Rhenium Carbonyls

    No full text
    The reaction of the previously known bis(6-diphenylphosphinoacenaphthyl-5-)telluride (6-Ph2P-Ace-5-)2Te (IV) with (CO)5ReCl and (CO)5MnBr proceeded with the liberation of CO and provided fac-(6-Ph2P-Ace-5-)2TeM(X)(CO)3 (fac-1: M = Re, X = Cl; fac-2: M = Mn, X = Br), in which IV acts as bidentate ligand. In solution, fac-1 and fac-2 are engaged in a reversible equilibrium with mer-(6-Ph2P-Ace-5-)2TeM(X)(CO)3 (mer-1: M = Re, X = Cl; mer-2: M = Mn, X = Br). Unlike fac-1, fac-2 is prone to release another equivalent of CO to give (6-Ph2P-Ace-5-)2TeMn(Br)(CO)2 (3), in which IV serves as tridentate ligand

    Peri-Interactions in 8-Diphenylphosphino-1-bromonaphthalene, 6-Diphenylphosphino-5-bromoacenaphthene, and Derivatives

    No full text
    The syntheses and full characterizations of the peri‐substituted naphthalenes (Nap) and acenaphthenes (Ace) 1‐Br‐8‐(Ph2P)‐Nap (1a) and 5‐Br‐6‐(Ph2P)‐Ace (1b), as well as their derivatives 1‐Br‐8‐[Ph2P(E)]‐Nap [E = CH3+ (counterion I–) (2a); E = O (3a); E = S (4a); E = Se (5a)] and 5‐Br‐6‐[Ph2P(E)]‐Ace [E = CH3+ (counterion I–) (2b); E = O (3b); E = S (4b); E = Se (5b)] are reported. In order to quantify the energetic and electronic effects of the peri‐interactions, an additional set of molecules, 1c–5c, with the bromine atom and the Ph2P(E) fragment on opposite sides of the naphthalene group was generated, which serves as reference because 1c–5c exhibit negligible peri‐interactions. The molecular arrangements of all 15 compounds were optimized at the B3PW91/6‐311+G(2df, p) level of theory. The analysis of the peri‐interactions was not only based on the inspection of the molecular arrangement and energies alone, but extended to a set of real‐space bonding indicators (RSBI). These indicators were derived from theoretically calculated electron densities and pair densities, respectively. Particularly, the stockholder, Atoms‐In‐Molecules (AIM) and Electron‐Localizability‐Indicator (ELI‐D) space partitioning schemes were used to produce Hirshfeld surfaces (HS), bond topological properties and basins of localized bonding and nonbonding electron pairs. Since 1c–5c are 35–58 kJ·mol–1 lower in energy than their counterparts 1a–5a, the hypothesis of a mainly repulsive peri‐interaction in 1a/b–5a/b was confirmed. The shapes and contact patterns of the HSs of atoms and fragments involved in the peri‐interactions (Br, P, E = CH3+, O, S, Se) reveal that only in 1a and 1b are peri‐interactions exhibited between the bromine and the phosphorus atoms. In all other cases (2a/b–5a/b), the interaction mainly occurs between the bromine atom and the E atom/fragment. According to the bond topological properties and the electron populations within the (non)bonding ELI‐D basins, which both are almost unaffected by the Br‐P/E peri‐interaction, sterical interactions are characterized essentially by geometrical and energetical changes
    corecore