144 research outputs found

    Solid-phase extraction and purification of membrane proteins using a UV-modified PMMA microfluidic bioaffinity mu SPE device

    Get PDF
    We present a novel microfluidic solid-phase extraction (??SPE) device for the affinity enrichment of biotinylated membrane proteins from whole cell lysates. The device offers features that address challenges currently associated with the extraction and purification of membrane proteins from whole cell lysates, including the ability to release the enriched membrane protein fraction from the extraction surface so that they are available for downstream processing. The extraction bed was fabricated in PMMA using hot embossing and was comprised of 3600 micropillars. Activation of the PMMA micropillars by UV/O3 treatment permitted generation of surface-confined carboxylic acid groups and the covalent attachment of NeutrAvidin onto the ??SPE device surfaces, which was used to affinity select biotinylated MCF-7 membrane proteins directly from whole cell lysates. The inclusion of a disulfide linker within the biotin moiety permitted release of the isolated membrane proteins via DTT incubation. Very low levels (???20 fmol) of membrane proteins could be isolated and recovered with ???89% efficiency with a bed capacity of 1.7 pmol. Western blotting indicated no traces of cytosolic proteins in the membrane protein fraction as compared to significant contamination using a commercial detergent-based method. We highlight future avenues for enhanced extraction efficiency and increased dynamic range of the ??SPE device using computational simulations of different micropillar geometries to guide future device designs.close2

    Implementing Telemedicine in Medical Emergency Response: Concept of Operation for a Regional Telemedicine Hub

    Get PDF
    A regional telemedicine hub, providing linkage of a telemedicine command center with an extended network of clinical experts in the setting of a natural or intentional disaster, may facilitate future disaster response and improve patient outcomes. However, the health benefits derived from the use of telemedicine in disaster response have not been quantitatively analyzed. In this paper, we present a general model of the application of telemedicine to disaster response and evaluate a concept of operations for a regional telemedicine hub, which would create distributed surge capacity using regional telemedicine networks connecting available healthcare and telemedicine infrastructures to external expertise. Specifically, we investigate (1) the scope of potential use of telemedicine in disaster response; (2) the operational characteristics of a regional telemedicine hub using a new discrete-event simulation model of an earthquake scenario; and (3) the benefit that the affected population may gain from a coordinated regional telemedicine network

    Gamma and pulsed electron radiolysis studies of CyMe4BTBP and CyMe4BTPhen: Identification of radiolysis products and effects on the hydrometallurgical separation of trivalent actinides and lanthanides

    Get PDF
    The radiolytic stability of the highly selective ligands CyMe4BTBP and CyMe4BTPhen against ionizing gamma radiation was studied in 1-octanol solution. CyMe4BTBP and CyMe4BTPhen are important extractants for a potential treatment of used nuclear fuel. They were studied under identical experimental conditions to directly compare the effects of gamma and pulsed electron radiolysis on the ligands and systematically study the influence of structural changes in the ligand backbone. Distribution ratios of Am3+, Cm3+ and Eu3+, the residual concentration of CyMe4BTBP and CyMe4BTPhen in solution, and the formation of radiolysis products were studied as a function of absorbed gamma dose and presence of an acidic aqueous phase during irradiation. Quantitative and semi-quantitative analyses were used to elucidate the radiolysis mechanism for both ligands. Addition products of alpha-hydroxyoctyl radicals formed through radiolysis of the 1-octanol diluent to the ligand molecules were identified as the predominant radiolysis products. These addition products also extract trivalent metal ions, as distribution ratios remained high although the parent molecule concentrations decreased. Therefore, the utilization time of a solvent using these extractants under the harsh conditions of used nuclear fuel treatment could be considerably longer than expected. Understanding the radiolysis mechanism is crucial for designing more radiation resistant extractants

    Measurement of Superluminal optical tunneling times in double-barrier photonic bandgaps

    Get PDF
    Tunneling of optical pulses at 1.5 micron wavelength through double-barrier periodic fiber Bragg gratings is experimentally investigated. Tunneling time measurements as a function of barrier distance show that, far from the resonances of the structure, the transit time is paradoxically short, implying Superluminal propagation, and almost independent of the distance between the barriers. These results are in agreement with theoretical predictions based on phase time analysis and also provide an experimental evidence, in the optical context, of the analogous phenomenon expected in Quantum Mechanics for non-resonant superluminal tunneling of particles across two successive potential barriers. [Attention is called, in particular, to our last Figure]. PACS nos.: 42.50.Wm, 03.65.Xp, 42.70.Qs, 03.50.De, 03.65.-w, 73.40.GkComment: LaTeX file (8 pages), plus 5 figure

    Microfluidic Device for On-Chip Immunophenotyping and Cytogenetic Analysis of Rare Biological Cells

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.The role of circulating plasma cells (CPCs) and circulating leukemic cells (CLCs) as biomarkers for several blood cancers, such as multiple myeloma and leukemia, respectively, have recently been reported. These markers can be attractive due to the minimally invasive nature of their acquisition through a blood draw (i.e., liquid biopsy), negating the need for painful bone marrow biopsies. CPCs or CLCs can be used for cellular/molecular analyses as well, such as immunophenotyping or fluorescence in situ hybridization (FISH). FISH, which is typically carried out on slides involving complex workflows, becomes problematic when operating on CLCs or CPCs due to their relatively modest numbers. Here, we present a microfluidic device for characterizing CPCs and CLCs using immunofluorescence or FISH that have been enriched from peripheral blood using a different microfluidic device. The microfluidic possessed an array of cross-channels (2–4 µm in depth and width) that interconnected a series of input and output fluidic channels. Placing a cover plate over the device formed microtraps, the size of which was defined by the width and depth of the cross-channels. This microfluidic chip allowed for automation of immunofluorescence and FISH, requiring the use of small volumes of reagents, such as antibodies and probes, as compared to slide-based immunophenotyping and FISH. In addition, the device could secure FISH results in <4 h compared to 2–3 days for conventional FISH

    Affinity enrichment of extracellular vesicles from plasma reveals mRNA changes associated with acute ischemic stroke

    Get PDF
    Currently there is no in vitro diagnostic test for acute ischemic stroke (AIS), yet rapid diagnosis is crucial for effective thrombolytic treatment. We previously demonstrated the utility of CD8(+) T-cells’ mRNA expression for AIS detection; however extracellular vesicles (EVs) were not evaluated as a source of mRNA for AIS testing. We now report a microfluidic device for the rapid and efficient affinity-enrichment of CD8(+) EVs and subsequent EV’s mRNA analysis using droplet digital PCR (ddPCR). The microfluidic device contains a dense array of micropillars modified with anti-CD8α monoclonal antibodies that enriched 158 ± 10 nm sized EVs at 4.3 ± 2.1 × 109 particles/100 µL of plasma. Analysis of mRNA from CD8(+) EVs and their parental T-cells revealed correlation in the expression for AIS-specific genes in both cell lines and healthy donors. In a blinded study, 80% test positivity for AIS patients and controls was revealed with a total analysis time of 3.7 h

    Changes in SARS-CoV-2 viral load and mortality during the initial wave of the pandemic in New York City

    Get PDF
    Funding: This work was partially supported by the National Center for Advancing Translational Sciences of the National Institutes of Health (UL1 TR0023484 to Julianne Imperato-McGinley) and the National Institute of Allergy and Infectious Diseases (UM1 AI069470 to M.E.S).Public health interventions such as social distancing and mask wearing decrease the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but it is unclear whether they decrease the viral load of infected patients and whether changes in viral load impact mortality from coronavirus disease 2019 (COVID-19). We evaluated 6923 patients with COVID-19 at six New York City hospitals from March 15-May 14, 2020, corresponding with the implementation of public health interventions in March. We assessed changes in cycle threshold (CT) values from reverse transcription-polymerase chain reaction tests and in-hospital mortality and modeled the impact of viral load on mortality. Mean CT values increased between March and May, with the proportion of patients with high viral load decreasing from 47.7% to 7.8%. In-hospital mortality increased from 14.9% in March to 28.4% in early April, and then decreased to 8.7% by May. Patients with high viral loads had increased mortality compared to those with low viral loads (adjusted odds ratio 2.34). If viral load had not declined, an estimated 69 additional deaths would have occurred (5.8% higher mortality). SARS-CoV-2 viral load steadily declined among hospitalized patients in the setting of public health interventions, and this correlated with decreases in mortality.Peer reviewe

    Solvent Optimization Studies for a New EURO-GANEX Process with 2,2’-Oxybis( N,N -di- n -decylpropanamide) (mTDDGA) and Its Radiolysis Products

    Get PDF
    The diglycolamide 2,2’-oxybis(N,N-di-n-decylpropanamide) (mTDDGA) is being studied as an extractant for actinides and lanthanides in the European Grouped Actinide Extraction (EURO-GANEX) process. The aim is the development of a more simplified process using a single extractant instead of a mixture of extractants used in the current EURO-GANEX process. This work presents solvent optimization studies of mTDDGA, with regards to the extraction characteristics of the different diastereomers of mTDGA and of mixed diastereomer solutions. Also radiolysis behavior has been studied by irradiation of solvent extraction systems in a gamma irradiation facility using 60^{60}Co. The availability of irradiated organic solutions made it possible to gain valuable insights into the plutonium loading capacity after gamma-irradiation of the solvent up to 445 kGy and to quantify degradation compounds. Solvent extraction characteristic of the major degradation compounds themselves were determined. Like other methylated diglycolamides, we found a remarkable difference in extraction of up to two orders of magnitude between the two diastereomers. High plutonium loading (36 g L1^{−1}) is feasible using this single extractant, even after absorbing a dose of 445 kGy. This remarkable observation is possibly promoted by the presence of the main degradation compound which extracts plutonium verywell

    Solid-phase extraction and purification of membrane proteins using a UV-modified PMMA microfluidic bioaffinity μSPE device

    Get PDF
    We present a novel microfluidic solid-phase extraction (μSPE) device for the affinity enrichment of biotinylated membrane proteins from whole cell lysates
    corecore