84 research outputs found

    Cooperative binding of ApiAP2 transcription factors is crucial for the expression of virulence genes in Toxoplasma gondii

    Get PDF
    International audienceToxoplasma gondii virulence depends on the expression of factors packed into specific organelles such as rhoptry and microneme. Although virulence factor expression is tightly regulated, the molecular mechanisms controlling their regulation remain poorly understood. ApiAP2 are a family of conserved transcription factors (TFs) that play an important role in regulating gene expression in apicomplexan parasites. TgAP2XI-5 is able to bind to transcription-ally active promoters of genes expressed during the S/M phase of the cell cycle, such as virulence genes (rhoptries and micronemes genes). We identified proteins interacting with TgAP2XI-5 including a cell cycle-regulated ApiAP2 TF, TgAP2X-5. Using an inducible knock-down strategy and RNA-seq, we demonstrated that the level of expression of number of virulence factors transcripts is affected by the disruption of TgAP2X-5 expression. While TgAP2X-5 disruption has mild effect on parasite invasion, it leads to the strain avirulence in mice. To better understand the molecular mechanisms at stake, we investigated the binding of TgAP2XI-5 at promoters in the TgAP2X-5 mutant strain in a genome-wide assay. We show that disruption of TgAP2X-5 expression leads to defects in TgAP2XI-5 binding to multiple rhoptry gene promoters. Taken together, these data suggest a cooperative contribution of two ApiAP2 TF in the regulation of virulence genes in T. gondii

    Preparation of α‐Oxo Semicarbazone Oligonucleotide Microarrays

    Full text link
    This unit describes the preparation of α‐oxo aldehyde functionalized oligodeoxynucleotides, the preparation and characterization of semicarbazide glass slides, and the fabrication of α‐oxo semicarbazone microarrays by site‐specific ligation of α‐oxo‐aldehyde oligodeoxynucleotides to the semicarbazide glass slides. The α‐oxo aldehyde group COCHO is extensively used in ligation chemistry for the preparation of large molecular constructs. It is stable toward air oxidation and mainly present in aqueous solution in the hydrated form COC(OH)2. It reacts efficiently with hydrazine derivatives, in particular, with the semicarbazide group. The reaction occurs spontaneously in water at pH 5.5. Site‐specific immobilization of glyoxylyl oligodeoxynucleotides on semicarbazide glass slides allows the preparation of high‐quality microarrays that can be used directly in hybridization experiments.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143637/1/cpnc1206.pd

    Crystal structure of Saccharomyces cerevisiae mitochondrial GatFAB reveals a novel subunit assembly in tRNA-dependent amidotransferases

    Get PDF
    Yeast mitochondrial Gln-mtRNAGln is synthesized by the transamidation of mischarged Glu-mtRNAGln by a non-canonical heterotrimeric tRNA-dependent amidotransferase (AdT). The GatA and GatB subunits of the yeast AdT (GatFAB) are well conserved among bacteria and eukaryota, but the GatF subunit is a fungi-specific ortholog of the GatC subunit found in all other known heterotrimeric AdTs (GatCAB). Here we report the crystal structure of yeast mitochondrial GatFAB at 2.0 Å resolution. The C-terminal region of GatF encircles the GatA-GatB interface in the same manner as GatC, but the N-terminal extension domain (NTD) of GatF forms several additional hydrophobic and hydrophilic interactions with GatA. NTD-deletion mutants displayed growth defects, but retained the ability to respire. Truncation of the NTD in purified mutants reduced glutaminase and transamidase activities when glutamine was used as the ammonia donor, but increased transamidase activity relative to the full-length enzyme when the donor was ammonium chloride. Our structure-based functional analyses suggest the NTD is a trans-acting scaffolding peptide for the GatA glutaminase active site. The positive surface charge and novel fold of the GatF-GatA interface, shown in this first crystal structure of an organellar AdT, stand in contrast with the more conventional, negatively charged bacterial AdTs described previousl

    Identification of novel genes potentially involved in somatic embryogenesis in chicory (Cichorium intybus L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In our laboratory we use cultured chicory (<it>Cichorium intybus</it>) explants as a model to investigate cell reactivation and somatic embryogenesis and have produced 2 chicory genotypes (K59, C15) sharing a similar genetic background. K59 is a responsive genotype (embryogenic) capable of undergoing complete cell reactivation <it>i.e</it>. cell de- and re-differentiation leading to somatic embryogenesis (SE), whereas C15 is a non-responsive genotype (non-embryogenic) and is unable to undergo SE. Previous studies <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> showed that the use of the β-D-glucosyl Yariv reagent (β-GlcY) that specifically binds arabinogalactan-proteins (AGPs) blocked somatic embryo production in chicory root explants. This observation indicates that β-GlcY is a useful tool for investigating somatic embryogenesis (SE) in chicory. In addition, a putative AGP (DT212818) encoding gene was previously found to be significantly up-regulated in the embryogenic K59 chicory genotype as compared to the non-embryogenic C15 genotype suggesting that this AGP could be involved in chicory re-differentiation <abbrgrp><abbr bid="B2">2</abbr></abbrgrp>. In order to improve our understanding of the molecular and cellular regulation underlying SE in chicory, we undertook a detailed cytological study of cell reactivation events in K59 and C15 genotypes, and used microarray profiling to compare gene expression in these 2 genotypes. In addition we also used β-GlcY to block SE in order to identify genes potentially involved in this process.</p> <p>Results</p> <p>Microscopy confirmed that only the K59, but not the C15 genotype underwent complete cell reactivation leading to SE formation. β-GlcY-treatment of explants blocked <it>in vitro </it>SE induction, but not cell reactivation, and induced cell wall modifications. Microarray analyses revealed that 78 genes were differentially expressed between induced K59 and C15 genotypes. The expression profiles of 19 genes were modified by β-GlcY-treatment. Eight genes were both differentially expressed between K59 and C15 genotypes during SE induction and transcriptionally affected by β-GlcY-treatment: <it>AGP </it>(DT212818), <it>26 S proteasome AAA ATPase subunit 6 </it>(<it>RPT6</it>), <it>remorin </it>(<it>REM</it>), <it>metallothionein-1 </it>(<it>MT1</it>), two non-specific lipid transfer proteins genes (<it>SDI-9 and DEA1</it>), <it>3-hydroxy-3-methylglutaryl-CoA reductase </it>(<it>HMG-CoA reductase</it>), and <it>snakin 2 </it>(<it>SN2</it>). These results suggest that the 8 genes, including the previously-identified <it>AGP </it>gene (DT212818), could be involved in cell fate determination events leading to SE commitment in chicory.</p> <p>Conclusion</p> <p>The use of two different chicory genotypes differing in their responsiveness to SE induction, together with β-GlcY-treatment represented an efficient tool to discriminate cell reactivation from the SE morphogenetic pathway. Such an approach, together with microarray analyses, permitted us to identify several putative key genes related to the SE morphogenetic pathway in chicory.</p

    Utilización de herramientas de simulación en la robótica industrial

    Get PDF
    Análisis de herramienta de simulación utilizada en el entorno industrial y estudio de las ventajas de la programación "offline" en un entorno productivo. Programación de una célula de trabajo industrial y ampliación posterior de la misma utilizando la herramienta de simulación industrial

    Toxoplasma gondii chromodomain protein 1 binds to heterochromatin and colocalises with centromeres and telomeres at the nuclear periphery

    Get PDF
    BACKGROUND: Apicomplexan parasites are responsible for some of the most deadly parasitic diseases afflicting humans, including malaria and toxoplasmosis. These obligate intracellular parasites exhibit a complex life cycle and a coordinated cell cycle-dependant expression program. Their cell division is a coordinated multistep process. How this complex mechanism is organised remains poorly understood.\ud \ud METHODS AND FINDINGS: In this study, we provide evidence for a link between heterochromatin, cell division and the compartmentalisation of the nucleus in Toxoplasma gondii. We characterised a T. gondii chromodomain containing protein (named TgChromo1) that specifically binds to heterochromatin. Using ChIP-on-chip on a genome-wide scale, we report TgChromo1 enrichment at the peri-centromeric chromatin. In addition, we demonstrate that TgChromo1 is cell-cycle regulated and co-localised with markers of the centrocone. Through the loci-specific FISH technique for T. gondii, we confirmed that TgChromo1 occupies the same nuclear localisation as the peri-centromeric sequences.\ud \ud CONCLUSION: We propose that TgChromo1 may play a role in the sequestration of chromosomes at the nuclear periphery and in the process of T. gondii cell division

    Exploring graphene-based materials’ genotoxicity: inputs of a screening method

    No full text
    International audienceGraphene-based materials (GBMs) are promising nanomaterials, and several innovations depend on their use. However, the assessment of their potential hazard must be carefully explored before entering any market. GBMs are indeed well-known to induce various biological impacts, including oxidative stress, which can potentially lead to DNA damage. Genotoxicity is a major endpoint for hazard assessment and has been explored for GBMs, but the available literature shows conflicting results. In this study, we assessed the genotoxicity of 13 various GBMs, one carbon black and one amorphous silica through a DNA damage response assay (using a human respiratory cell model, BEAS-2B). Concurrently, oxidative stress was assessed through a ROS production quantification (DCFH-DA assay using a murine macrophage model, RAW 264.7). We also performed a full physicochemical characterization of our samples to explore potential structureactivity relationships involving genotoxicity. We observed that surface oxidation appears linked to genotoxicity response and were able to distinguish several groups within our studied GBMs showing different genotoxicity results. Our findings highlight the necessity to individually consider each nanoform of GBMs since the tested samples showed various results and modes of action. We propose this study as a genotoxicity assessment using a high-throughput screening method and suggest few hypotheses concerning the genotoxicity mode of action of GBMs

    Transcriptomic analysis in the leech Theromyzon tessulatum: involvement of cystatin B in innate immunity.

    No full text
    At the present time, there is little information on mechanisms of innate immunity in invertebrate groups other than insects, especially annelids. In the present study, we have performed a transcriptomic study of the immune response in the leech Theromyzon tessulatum after bacterial challenge, by a combination of differential display RT (reverse transcriptase)-PCR and cDNA microarrays. The results show relevant modulations concerning several known and unknown genes. Indeed, threonine deaminase, malate dehydrogenase, cystatin B, polyadenylate-binding protein and alpha-tubulin-like genes are up-regulated after immunostimulation. We focused on cystatin B (stefin B), which is an inhibitor of cysteine proteinases involved in the vertebrate immune response. We have cloned the full-length cDNA and named the T. tessulatum gene as Tt-cysb. Main structural features of cystatins were identified in the derived amino acid sequence of Tt-cysb cDNA; namely, a glycine residue in the N-terminus and a consensus sequence of Gln-Xaa-Val-Xaa-Gly (QXVXG) corresponding to the catalytic site. Moreover, Tt-cysb is the first cystatin B gene characterized in invertebrates. We have determined by in situ hybridization and immunocytochemistry that Tt-cysb is only expressed in large coelomic cells. In addition, this analysis confirmed that Tt-cysb is up-regulated after bacterial challenge, and that increased expression occurs only in coelomic cells. These data demonstrate that the innate immune response in the leech involves a cysteine proteinase inhibitor that is not found in ecdysozoan models, such as Drosophila melanogaster or Caenorhabditis elegans, and so underlines the great need for information about innate immunity mechanisms in different invertebrate groups
    corecore