2,590 research outputs found

    Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation

    Full text link
    © 2018 Optical Society of America. In this paper, a graphene-based hybrid plasmonic waveguide is proposed for highly efficient broadband surface plasmon polariton (SPP) propagation and modulation at mid-infrared (mid-IR) spectrum. The hybrid plasmonic waveguide is composed of a monolayer graphene sheet in the center, a polysilicon gating layer, and two inner dielectric buffer layers and two outer parabolic-ridged silicon substrates symmetrically placed on both sides of the graphene. Owing to the unique parabolic-ridged waveguide structure, the light-graphene interaction and subwavelength SPPs confinement of the fundamental SPP mode for the hybrid waveguide can be significantly increased. Under the graphene chemical potential of 1.0 eV, the proposed waveguide can achieve outstanding SPP propagation performance with long propagation length of 12.1-16.7 μm and small normalized mode area of ~10−4 in the frequency range of 10-20 THz, exhibiting more than one order smaller in the normalized mode area while remaining the propagation length almost the same level with respect to the hybrid plasmonic waveguide without parabolic ridges. By tuning the graphene chemical potential from 0.1 to 1.0 eV, we demonstrate the waveguide has a modulation depth greater than 51% for the frequency ranging from 10 to 20 THz and reaches a maximum of nearly 100% at the frequency higher than 18 THz. Benefitting from the excellent broadband mid-IR propagation and modulation performance, the graphene-based hybrid plasmonic waveguide may open up a new way for various mid-IR waveguides, modulators, interconnects and optoelectronic devices

    Assessment of China's virtual air pollution transport embodied in trade by using a consumption-based emission inventory

    Get PDF
    Substantial anthropogenic emissions from China have resulted in serious air pollution, and this has generated considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated; however, understanding the mechanisms how the pollutant was transferred through economic and trade activities remains a challenge. For the first time, we quantified and tracked China's air pollutant emission flows embodied in interprovincial trade, using a multiregional input - output model framework. Trade relative emissions for four key air pollutants (primary fine particle matter, sulfur dioxide, nitrogen oxides and non-methane volatile organic compounds) were assessed for 2007 in each Chinese province. We found that emissions were significantly redistributed among provinces owing to interprovincial trade. Large amounts of emissions were embodied in the imports of eastern regions from northern and central regions, and these were determined by differences in regional economic status and environmental policy. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers and producers within national agreements to encourage efficiency improvement in the supply chain and optimize consumption structure internationally. The consumption-based air pollutant emission inventory developed in this work can be further used to attribute pollution to various economic activities and final demand types with the aid of air quality models

    Antitumor effect of the ethanol extract of Scutellaria baicalensis on the mice bearing U14 cervical cancer

    Get PDF
    Scutellaria baicalensis which is a traditional plant amedica in China possesses a wide anti-cancer effect. However, the inhibition effect and mechanism of S. baicalensis on cervical cancer is not clear up to now. In our study, two kinds of ethanol extract of S. baicalensis were used in U14 cervical cancer mice. The rate of tumor inhibition was detected, and the tumor cell morphology was observed by hematoxylin and eosin (H.E.) staining method. The cell cycle and apoptosis rate were examined by flow cytometry and the content of tumor necrosis factor-alpha (TNF-α) in serum was determined by enzyme-linked immunosorbent assay (ELISA) kit. Furthermore, the expression of B-cell lymphoma 2 (Bcl-2) and Bax gene was detected by immunohistochemistry method. The results showed that the tumor growth could be inhibited with the highest inhibition rate of 59.86% and the apoptosis of tumor cells could be induced and cell cycles were arrested at S phase in the ethanol extract of S. baicalensis groups. Besides, the content of TNF-α in serum was significantly increased (P<0.05). The Bcl-2 positive cells got significance reduction and Bax positive cells were increased. So we conclude that the ethanol extract of S. baicalensis can inhibit the growth of tumor cells, arrest the cell cycle and induce the cells apoptosis and increase the content of tumor necrosis factor-alpha TNF-α in serum. The mechanism of anti-tumor activity might be associated with down regulating the level of Bcl-2 gene and up regulating the level of Bax gene.Key words: Scutellaria baicalensis, cervical cancer, cell cycle, cell apoptosis, TNF-α, Bcl-2, Bax

    Assessing environmental services and disservices of urban street trees. an application of the emergy accounting

    Get PDF
    The urban green infrastructure (UGI), with special focus on street trees, is a very complex engineered ecosystem which plays an important role in generating ecosystem services and, if improperly managed, a number of dis-services to be prevented. This study applies the Emergy Accounting method to the cost and benefit evaluation, in order to establish a non-monetary “supply-side” assessment framework capable to assign an environmental value to each kind of services provided by urban forests and other green infrastructures. Further, the study classifies urban street tree integrated valuation framework into ecosystem services, avoided cost for human health and biodiversity damage, growing/maintenance cost and ecosystem dis-services. In a like manner, the interaction among the three different component flows in street tree ecosystems (costs, benefits and associated dis-services) are compared by means of a ternary diagram. Taking the case of the street ecosystem in Beijing, China, eleven typical urban tree species, including oak, maple, Chinese ash and linden, are selected for services and dis-services evaluation. Results show that, in general, UGI provides a large number of services to urban population, but it may also generate dis-services affecting human health, well-being and biodiversity when tree selection, location and management is not accurate. Results may help improve management practices which enhance the overall ecosystem service provision by urban forests not only in Beijing as case study but also in other cities by means of appropriate management

    The evolution of stellar metallicity gradients of the Milky Way disk from LSS-GAC main sequence turn-off stars: a two-phase disk formation history?

    Full text link
    We use 297 042 main sequence turn-off stars selected from the LSS-GAC to determine the radial and vertical gradients of stellar metallicity of the Galactic disk in the anti-center direction. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars of oldest ages (>11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars of oldest ages (>11Gyr) are negative and show only very weak variations with the Galactocentric distance in the disk plane, RR, while those yielded by younger stars show strong variations with RR. After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maxima (steepest) at age 7-8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assemblage of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are significant radial flows of gas in the disk, and the rate of gas inflow near the solar neighborhood reaches a maximum around a lookback time of 7-8 Gyr. The transition of the two phases occurs around a lookback time between 8 and 11 Gyr. The two phases may be responsible for the formation of the Milky Way thick and thin disks, respectively. And, as a consequence, we recommend that stellar age is a natural, physical criterion to distinguish thin and thick disk stars. ... (abridged)Comment: 31 pages, 17 figures, Accepted for publication in a special issue of Research in Astronomy and Astrophysics on LAMOST science

    Weak Field Phase Diagram for an Integer Quantum Hall Liquid

    Full text link
    We study the localization properties in the transition from a two-dimensional electron gas at zero magnetic field into an integer quantum Hall (QH) liquid. By carrying out a direct calculation of the localization length for a finite size sample using a transfer matrix technique, we systematically investigate the field and disorder dependences of the metal-insulator transition in the weak field QH regime. We obtain a different phase diagram from the one conjectured in previous theoretical studies. In particular, we find that: (1) the extended state energy EcE_{c} for each Landau level (LL) is {\it always} linear in magnetic field; (2) for a given Landau level and disorder configuration there exists a critical magnetic field BcB_{c} below which the extended state disappears; (3) the lower LLs are more robust to the metal-insulator transition with smaller BcB_{c}. We attribute the above results to strong LL coupling effect. Experimental implications of our work are discussed.Comment: 4 pages, ReVTeX 3.0, 4 figures (available upon request

    Remodeling the fibrotic tumor microenvironment of desmoplastic melanoma to facilitate vaccine immunotherapy

    Get PDF
    Highly fibrotic and collagen-rich properties in desmoplastic melanoma (DM) result in an immune-suppressive fibrotic tumor microenvironment (TME) that resists clinical therapies. The different clinical and pathological properties, as compared to conventional melanoma, lead to delayed diagnosis and it is difficult to deliver drugs effectively due to fibrosis. Herein, we designed a chemo-immuno strategy focused on combining vaccination immunotherapy with multi-targeting sunitinib (SUN) nano-therapy to remodel TME and generate a robust immune response and a stronger synergistic anti-cancer effect. This strategy was evaluated side-by-side with non-desmoplastic melanoma and achieved significant improvement in therapeutic efficacy. The combination treatment was also synergistically assessed with the desmoplastic melanoma model. This strategy can remodel the fibrotic immunosuppressive TME and result in a robust cytotoxic T-cell response by reducing the collagen content, normalizing blood vessels, inhibiting tumor-associated fibroblasts and reducing high levels of suppressor immune cells. The modification of fibrotic immunosuppressive TME may serve as a good approach to further enhance immunotherapy for desmoplastic tumors

    Claudins in intestines

    Get PDF
    Intestines are organs that not only digest food and absorb nutrients, but also provide a defense barrier against pathogens and noxious agents ingested. Tight junctions (TJs) are the most apical component of the junctional complex, providing one form of cell-cell adhesion in enterocytes and playing a critical role in regulating paracellular barrier permeability. Alteration of TJs leads to a number of pathophysiological diseases causing malabsorption of nutrition and intestinal structure disruption, which may even contribute to systemic organ failure. Claudins are the major structural and functional components of TJs with at least 24 members in mammals. Claudins have distinct charge-selectivity, either by tightening the paracellular pathway or functioning as paracellular channels, regulating ions and small molecules passing through the paracellular pathway. In this review, we have discussed the functions of claudin family members, their distribution and localization in the intestinal tract of mammals, their alterations in intestine-related diseases and chemicals/agents that regulate the expression and localization of claudins as well as the intestinal permeability, which provide a therapeutic view for treating intestinal diseases
    corecore