35 research outputs found

    Engineering Vacancies in Bi2S3 yields sub-Bandgap Photoresponse and highly sensitive Short-Wave Infrared Photodetectors

    Full text link
    Defects play an important role in tailoring the optoelectronic properties of materials. Here we demonstrate that sulphur vacancies are able to engineer sub-band photoresponse into the short-wave infrared range due to formation of in-gap states in Bi2S3 single crystals supported by density functional (DF) calculations. Sulfurization and subsequent refill of the vacancies results in faster response but limits the spectral range to the near infrared as determined by the bandgap of Bi2S3. A facile chemical treatment is then explored to accelerate the speed of sulphur deficient (SD)-based detectors on the order of 10 ms without sacrificing its spectral coverage into the infrared, while holding a high D* close to 10^15 Jones in the visible-near infrared range and 10^12 Jones at 1.6 um. This work also provides new insights into the role sulphur vacancies play on the electronic structure and, as a result, into sub-bandgap photoresponse enabling ultrasensitive, fast and broadband photodetectors

    MoS2-HgTe Quantum Dot Hybrid Photodetectors beyond 2 µm

    No full text
    Mercury telluride (HgTe) colloidal quantum dots (CQDs) have been developed as promising materials for the short and mid‐wave infrared photodetection applications because of their low cost, solution processing, and size tunable absorption in the short wave and mid‐infrared spectrum. However, the low mobility and poor photogain have limited the responsivity of HgTe CQD‐based photodetectors to only tens of mA W−1. Here, HgTe CQDs are integrated on a TiO2 encapsulated MoS2 transistor channel to form hybrid phototransistors with high responsivity of ≈106 A W−1, the highest reported to date for HgTe QDs. By operating the phototransistor in the depletion regime enabled by the gate modulated current of MoS2, the noise current is significantly suppressed, leading to an experimentally measured specific detectivity D* of ≈1012 Jones at a wavelength of 2 µm. This work demonstrates for the first time the potential of the hybrid 2D/QD detector technology in reaching out to wavelengths beyond 2 µm with compelling sensitivity.Peer Reviewe

    MoS2-HgTe Quantum Dot Hybrid Photodetectors beyond 2 μm

    No full text
    Mercury telluride (HgTe) colloidal quantum dots (CQDs) have been developed as promising materials for the short and mid-wave infrared photodetection applications because of their low cost, solution processing and size tunable absorption in the short wave- and mid- infrared spectrum. However, the lowmobility and poor photo-gain have limited the responsivity of HgTe CQDs-based photodetectors to only tens of mA/W. Here, we integrated HgTe CQDs on a TiO2 encapsulated MoS2 transistor channel to form hybrid phototransistors with high responsivity of ~106 A/W, the highest reported to date for HgTe QDs. By operating the phototransistor in the depletion regime enabled by the gate modulated current of MoS2, the noise current is significantly suppressed leading to an experimentally measured specific detectivity D* of ~1012 Jones at a wavelength of 2 μm. This work demonstrates for the first time the potential of the hybrid 2D/QD detector technology in reaching out to wavelengths beyond 2 μm with compelling sensitivity.Peer Reviewe

    Novel two-dimensional monoelemental and ternary materials: growth, physics and application

    No full text
    Two-dimensional (2D) materials have undergone a rapid development toward real applications since the discovery of graphene. At first, graphene is a star material because of the ultrahigh mobility and novel physics, but it always suffered from zero bandgap and limited device application. Then, 2D binary compounds such as transition-metal chalcogenides emerged as complementary materials for graphene due to their sizable bandgap and moderate electrical properties. Recently, research interests have turned to monoelemental and ternary 2D materials. Among them, monoelemental 2D materials such as arsenic (As), antimony (Sb), bismuth (Bi), tellurium (Te), etc., have been the focus. For example, bismuthene can act as a 2D topological insulator with nontrivial topological edge states and high bulk gap, providing the novel platforms to realize the quantum spin-Hall systems. Meanwhile, ternary 2D materials such as Bi2O2Se, BiOX and CrOX (X=Cl, Br, I) have also emerged as promising candidates in optoelectronics and spintronics due to their extraordinary mobility, favorable band structures and intrinsic ferromagnetism with high Curie temperature. In this review, we will discuss the recent works and future prospects on the emerging monoelemental and ternary materials in terms of their structure, growth, physics and device applications

    Near-Unity Photoluminescence Quantum Yield in CsPbBr3 Nanocrystal Solid-State Films via Postsynthesis Treatment with Lead Bromide

    No full text
    Metal halide perovskite nanocrystals (NCs) possess high photoluminescence (PL) quantum yield (PL) and color tunability. Yet, until now, it has been difficult to maintain the high PL observed in solution in spin-coated films. Here, we report a novel CsPbBr3 NCs room-temperature synthesis based on Cs acetate, which displays near-unity PL in solid-state films upon post-synthetic treatment with lead bromide. The as-synthesized NCs show a PL of 80% in spincoated films but the post-synthesis treatment further enhances the efficiency >95%. The high PL is further confirmed by the monomolecular decay of the PL (5.8 ns) indicating a nearly complete suppression of non-radiative channels. The obtained films demonstrate high stability in air and require around 3 weeks to decrease to half the initial PL value.Peer Reviewe

    Type II Homo-Type Bi<sub>2</sub>O<sub>2</sub>Se Nanosheet/InSe Nanoflake Heterostructures for Self-Driven Broadband Visible-Near-Infrared Photodetectors

    Get PDF
    Bi2O2Se nanosheets, an emerging ternary non-van der Waals two-dimensional (2D) material, have garnered considerable research attention in recent years owing to their robust air stability, narrow indirect bandgap, high mobility, and diverse intriguing properties. However, most of them show high dark current and relatively low light on/off ratio and slow response speed because of the large charge carrier concentration and bolometric effect, hindering their further application in low-energy-consuming optoelectronics. Herein, a homotype van der Waals heterostructure based on exfoliated n-InSe integrated with chemical vapor deposition (CVD)-grown n-Bi2O2Se nanosheets that have type II band alignment was fabricated. The efficient interfacial charge separation, strong interlayer coupling, and effective built-in electric field across the heterointerface demonstrated excellent, stable, and broadband self-driven photodetection in the range 400-1064 nm. Specifically, a high responsivity (R) of 75.2 mA·W-1 and a high specific detectivity (D*) of 1.08 × 1012 jones were achieved under 405 nm illumination. Additionally, a high R of 13.3 mA·W-1 and a high D* of 2.06 × 1011 jones were achieved under 980 nm illumination. Meanwhile, an ultrahigh Ilight/Idark ratio over 105 and a fast response time of 5.8/15 ms under 405 nm illumination confirmed the excellent photosensitivity and fast response behavior. Furthermore, R could be enhanced to 13.6 and 791 mA·W-1 under 405 and 980 nm illumination at a drain-source voltage (Vds) of 1 V, respectively, originating from a lower potential barrier. This study suggested that the Bi2O2Se nanosheet/InSe nanoflake homotype heterojunction can offer potential applications in next-generation broadband photodetectors that consume low energy and exhibit high performance.</p
    corecore