52 research outputs found

    The Gene Ontology Annotation (GOA) Database

    Get PDF

    QuickGO: a web-based tool for Gene Ontology searching

    Get PDF
    Summary: QuickGO is a web-based tool that allows easy browsing of the Gene Ontology (GO) and all associated electronic and manual GO annotations provided by the GO Consortium annotation groups QuickGO has been a popular GO browser for many years, but after a recent redevelopment it is now able to offer a greater range of facilities including bulk downloads of GO annotation data which can be extensively filtered by a range of different parameters and GO slim set generation

    A guide to best practices for Gene Ontology (GO) manual annotation.

    Get PDF
    The Gene Ontology Consortium (GOC) is a community-based bioinformatics project that classifies gene product function through the use of structured controlled vocabularies. A fundamental application of the Gene Ontology (GO) is in the creation of gene product annotations, evidence-based associations between GO definitions and experimental or sequence-based analysis. Currently, the GOC disseminates 126 million annotations covering >374,000 species including all the kingdoms of life. This number includes two classes of GO annotations: those created manually by experienced biocurators reviewing the literature or by examination of biological data (1.1 million annotations covering 2226 species) and those generated computationally via automated methods. As manual annotations are often used to propagate functional predictions between related proteins within and between genomes, it is critical to provide accurate consistent manual annotations. Toward this goal, we present here the conventions defined by the GOC for the creation of manual annotation. This guide represents the best practices for manual annotation as established by the GOC project over the past 12 years. We hope this guide will encourage research communities to annotate gene products of their interest to enhance the corpus of GO annotations available to all. DATABASE URL: http://www.geneontology.org

    The Gene Ontology of eukaryotic cilia and flagella.

    Get PDF
    BACKGROUND: Recent research into ciliary structure and function provides important insights into inherited diseases termed ciliopathies and other cilia-related disorders. This wealth of knowledge needs to be translated into a computational representation to be fully exploitable by the research community. To this end, members of the Gene Ontology (GO) and SYSCILIA Consortia have worked together to improve representation of ciliary substructures and processes in GO. METHODS: Members of the SYSCILIA and Gene Ontology Consortia suggested additions and changes to GO, to reflect new knowledge in the field. The project initially aimed to improve coverage of ciliary parts, and was then broadened to cilia-related biological processes. Discussions were documented in a public tracker. We engaged the broader cilia community via direct consultation and by referring to the literature. Ontology updates were implemented via ontology editing tools. RESULTS: So far, we have created or modified 127 GO terms representing parts and processes related to eukaryotic cilia/flagella or prokaryotic flagella. A growing number of biological pathways are known to involve cilia, and we continue to incorporate this knowledge in GO. The resulting expansion in GO allows more precise representation of experimentally derived knowledge, and SYSCILIA and GO biocurators have created 199 annotations to 50 human ciliary proteins. The revised ontology was also used to curate mouse proteins in a collaborative project. The revised GO and annotations, used in comparative 'before and after' analyses of representative ciliary datasets, improve enrichment results significantly. CONCLUSIONS: Our work has resulted in a broader and deeper coverage of ciliary composition and function. These improvements in ontology and protein annotation will benefit all users of GO enrichment analysis tools, as well as the ciliary research community, in areas ranging from microscopy image annotation to interpretation of high-throughput studies. We welcome feedback to further enhance the representation of cilia biology in GO

    MINT and IntAct contribute to the Second BioCreative challenge: serving the text-mining community with high quality molecular interaction data

    Get PDF
    In the absence of consolidated pipelines to archive biological data electronically, information dispersed in the literature must be captured by manual annotation. Unfortunately, manual annotation is time consuming and the coverage of published interaction data is therefore far from complete. The use of text-mining tools to identify relevant publications and to assist in the initial information extraction could help to improve the efficiency of the curation process and, as a consequence, the database coverage of data available in the literature. The 2006 BioCreative competition was aimed at evaluating text-mining procedures in comparison with manual annotation of protein-protein interactions

    QuickGO: a user tutorial for the web-based Gene Ontology browser

    Get PDF
    The Gene Ontology (GO) has proven to be a valuable resource for functional annotation of gene products. At well over 27 000 terms, the descriptiveness of GO has increased rapidly in line with the biological data it represents. Therefore, it is vital to be able to easily and quickly mine the functional information that has been made available through these GO terms being associated with gene products. QuickGO is a fast, web-based tool for browsing the GO and all associated GO annotations provided by the GOA group. After undergoing a redevelopment, QuickGO is now able to offer many more features beyond simple browsing. Users have responded well to the new tool and given very positive feedback about its usefulness. This tutorial will demonstrate how some of these features could be useful to the researcher wanting to discover more about their dataset, particular areas of biology or to find new ways of directing their research

    Guidelines for the functional annotation of microRNAs using the Gene Ontology.

    Get PDF
    MicroRNA regulation of developmental and cellular processes is a relatively new field of study, and the available research data have not been organized to enable its inclusion in pathway and network analysis tools. The association of gene products with terms from the Gene Ontology is an effective method to analyze functional data, but until recently there has been no substantial effort dedicated to applying Gene Ontology terms to microRNAs. Consequently, when performing functional analysis of microRNA data sets, researchers have had to rely instead on the functional annotations associated with the genes encoding microRNA targets. In consultation with experts in the field of microRNA research, we have created comprehensive recommendations for the Gene Ontology curation of microRNAs. This curation manual will enable provision of a high-quality, reliable set of functional annotations for the advancement of microRNA research. Here we describe the key aspects of the work, including development of the Gene Ontology to represent this data, standards for describing the data, and guidelines to support curators making these annotations. The full microRNA curation guidelines are available on the GO Consortium wiki (http://wiki.geneontology.org/index.php/MicroRNA_GO_annotation_manual).R.P.H. and R.C.L are supported by funding from a British Heart Foundation grant (RG/13/5/30112) and the National Institute for Health Research University College London Hospitals Biomedical Research Centre. M.M. is a Senior Research Fellow of the British Heart Foundation (FS/13/2/29892). A.Z. is an Intermediate Fellow of the British Heart Foundation (FS/13/18/30207). D.S. is supported by a grant awarded to the Mouse Genome Database from the National Human Genome Research Institue at the US National Institutes of Health (HG-00330). P.D’E., M.G., M.O-M. are supported by grants from the US National Institutes of Health (P41 HG003751 and U54 GM114833), Ontario Research Fund, and the European Molecular Biology Laboratory. D.H. is supported by a grant awarded to the Zebrafish Information Network fromthe National Human Genome Research Institute at the US National Institutes of Health (HG002659). A.Z.K. is funded by a NIHR University College London Hospitals Biomedical Research Centre, Research Capability Funding award (RCF) (RCF123). L.M. is a Ragnar Söderberg fellow in Medicine (M-14/55), and received funding from Swedish Heart-Lung-Foundation (20120615, 20130664, 20140186). Huntley, RP 22 R.B. and D.O-S. are supported by R.B. and D.O-S. are supported by a grant awarded to The Gene Ontology Consortium (Principal Investigators: JA Blake, JM Cherry, S Lewis, PW Sternberg and P Thomas) by the National Human Genome Research Institute (NHGRI) (#U41 HG22073). V.P. and J.R.S. are supported by a grant from the National Heart, Lung, and Blood Institute on behalf of the National Institutes of Health (HL64541). K.V.A. is supported by a grant awarded to the Gene Ontology Consortium from the National Human Genome Research Institute at the US National Institutes of Health (HG002273). V.W. is supported by a Wellcome Trust grant (104967/Z/14/Z). We would like to thank Leonore Reiser and Tanya Berardini who provided guidance on the plant miRNA processing pathway. Also thanks to David Hill, Harold Drabkin, Judith Blake, Karen Christie, Donghui Li and Pascale Gaudet who contributed to discussions regarding GO curation procedures and to Lisa Matthews and Bruce May who provided helpful feedback on the manuscript. We are very grateful to Tony Sawford and Maria Martin from the European Bioinformatics Institute for access to the online GO curation tool, which is an essential component of this annotation project. Many thanks to members of the GO Editorial Office for useful discussions about the placement and definition of new GO terms. We also thank Alex Bateman and Anton Petrov for being responsive to our feedback regarding RNAcentral functionality. Author contributions: R.C.L. initiated discussions in the GO Consortium regarding miRNA curation guidelines and supervised the project, R.P.H. researched and constructed the guidelines and wrote the manuscript, R.P.H., R.C.L., D.S., R.B., P.D’E., M.G., M.O-M., D.H., V.P., J.R.S., K.V.A. and V.W. contributed to discussions regarding GO curation procedures and provided feedback on the manuscript. D.O-S. provided the expertise on definitions and placements of miRNA-related GO terms and performed the necessary updates and additions to both the GO and to the annotation extension relations used herein. M.M., A.Z., L.M. and A.Z.K. provided guidance with the scientific aspect of the guidelines and provided feedback on the manuscript.This is the final version of the article. It first appeared from Cold Spring Harbor Press via http://dx.doi.org/10.1261/rna.055301.11

    Representing kidney development using the gene ontology.

    Get PDF
    Gene Ontology (GO) provides dynamic controlled vocabularies to aid in the description of the functional biological attributes and subcellular locations of gene products from all taxonomic groups (www.geneontology.org). Here we describe collaboration between the renal biomedical research community and the GO Consortium to improve the quality and quantity of GO terms describing renal development. In the associated annotation activity, the new and revised terms were associated with gene products involved in renal development and function. This project resulted in a total of 522 GO terms being added to the ontology and the creation of approximately 9,600 kidney-related GO term associations to 940 UniProt Knowledgebase (UniProtKB) entries, covering 66 taxonomic groups. We demonstrate the impact of these improvements on the interpretation of GO term analyses performed on genes differentially expressed in kidney glomeruli affected by diabetic nephropathy. In summary, we have produced a resource that can be utilized in the interpretation of data from small- and large-scale experiments investigating molecular mechanisms of kidney function and development and thereby help towards alleviating renal disease

    Annotation of gene product function from high-throughput studies using the Gene Ontology.

    Get PDF
    High-throughput studies constitute an essential and valued source of information for researchers. However, high-throughput experimental workflows are often complex, with multiple data sets that may contain large numbers of false positives. The representation of high-throughput data in the Gene Ontology (GO) therefore presents a challenging annotation problem, when the overarching goal of GO curation is to provide the most precise view of a gene's role in biology. To address this, representatives from annotation teams within the GO Consortium reviewed high-throughput data annotation practices. We present an annotation framework for high-throughput studies that will facilitate good standards in GO curation and, through the use of new high-throughput evidence codes, increase the visibility of these annotations to the research community
    • …
    corecore