46 research outputs found

    Comparative Analysis of the Saccharomyces cerevisiae and Caenorhabditis elegans Protein Interaction Network

    Get PDF
    Protein interaction networks aim to summarize the complex interplay of proteins in an organism. Early studies suggested that the position of a protein in the network determines its evolutionary rate but there has been considerable disagreement as to what extent other factors, such as protein abundance, modify this reported dependence. We compare the genomes of Saccharomyces cerevisiae and Caenorhabditis elegans with those of closely related species to elucidate the recent evolutionary history of their respective protein interaction networks. Interaction and expression data are studied in the light of a detailed phylogenetic analysis. The underlying network structure is incorporated explicitly into the statistical analysis. The increased phylogenetic resolution, paired with high-quality interaction data, allows us to resolve the way in which protein interaction network structure and abundance of proteins affect the evolutionary rate. We find that expression levels are better predictors of the evolutionary rate than a protein's connectivity. Detailed analysis of the two organisms also shows that the evolutionary rates of interacting proteins are not sufficiently similar to be mutually predictive. It appears that meaningful inferences about the evolution of protein interaction networks require comparative analysis of reasonably closely related species. The signature of protein evolution is shaped by a protein's abundance in the organism and its function and the biological process it is involved in. Its position in the interaction networks and its connectivity may modulate this but they appear to have only minor influence on a protein's evolutionary rate.Comment: Accepted for publication in BMC Evolutionary Biolog

    Bioinformatic analysis of Entamoeba histolytica SINE1 elements

    Get PDF
    BACKGROUND: Invasive amoebiasis, caused by infection with the human parasite Entamoeba histolytica remains a major cause of morbidity and mortality in some less-developed countries. Genetically E. histolytica exhibits a number of unusual features including having approximately 20% of its genome comprised of repetitive elements. These include a number of families of SINEs - non-autonomous elements which can, however, move with the help of partner LINEs. In many eukaryotes SINE mobility has had a profound effect on gene expression; in this study we concentrated on one such element - EhSINE1, looking in particular for evidence of recent transposition. RESULTS: EhSINE1s were detected in the newly reassembled E. histolytica genome by searching with a Hidden Markov Model developed to encapsulate the key features of this element; 393 were detected. Examination of their sequences revealed that some had an internal structure showing one to four 26-27 nt repeats. Members of the different classes differ in a number of ways and in particular those with two internal repeats show the properties expected of fairly recently transposed SINEs - they are the most homogeneous in length and sequence, they have the longest (i.e. the least decayed) target site duplications and are the most likely to show evidence (in a cDNA library) of active transcription. Furthermore we were able to identify 15 EhSINE1s (6 pairs and one triplet) which appeared to be identical or very nearly so but inserted into different sites in the genome; these provide good evidence that if mobility has now ceased it has only done so very recently. CONCLUSIONS: Of the many families of repetitive elements present in the genome of E. histolytica we have examined in detail just one - EhSINE1. We have shown that there is evidence for waves of transposition at different points in the past and no evidence that mobility has entirely ceased. There are many aspects of the biology of this parasite which are not understood, in particular why it is pathogenic while the closely related species E. dispar is not, the great genetic diversity found amongst patient isolates and the fact, which may be related, that only a small proportion of those infected develop clinical invasive amoebiasis. Mobile genetic elements, with their ability to alter gene expression may well be important in unravelling these puzzles

    Genome Environment Browser (GEB): a dynamic browser for visualising high-throughput experimental data in the context of genome features

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is accumulating evidence that the milieu of repeat elements and other non-genic sequence features at a given chromosomal locus, here defined as the genome environment, can play an important role in regulating chromosomal processes such as transcription, replication and recombination. The availability of whole-genome sequences has allowed us to annotate the genome environment of any locus in detail. The development of genome wide experimental analyses of gene expression, chromatin modification and chromatin proteins means that it is now possible to identify potential links between chromosomal processes and the underlying genome environment. There is a need for novel bioinformatic tools that facilitate these studies.</p> <p>Results</p> <p>We developed the Genome Environment Browser (GEB) in order to visualise the integration of experimental data from large scale high throughput analyses with repeat sequence features that define the local genome environment. The browser has incorporated dynamic scales adjustable in real-time, which enables scanning of large regions of the genome as well as detailed investigation of local regions on the same page without the need to load new pages. The interface also accommodates a 2-dimensional display of repetitive features which vary substantially in size, such as LINE-1 repeats. Specific queries for preliminary quantitative analysis of genome features can also be formulated, results of which can be exported for further analysis.</p> <p>Conclusion</p> <p>The Genome Environment Browser is a versatile program which can be easily adapted for displaying all types of genome data with known genomic coordinates. It is currently available at <url>http://web.bioinformatics.ic.ac.uk/geb/</url>.</p

    Too Hot to Handle: Unprecedented Seagrass Death Driven by Marine Heatwave in a World Heritage Area

    Get PDF
    The increased occurrence of extreme climate events, such as marine heatwaves (MHWs), has resulted in substantial ecological impacts worldwide. To date metrics of thermal stress within marine systems have focussed on coral communities, and less is known about measuring stress relevant to other primary producers, such as seagrasses. An extreme MHW occurred across the Western Australian coastline in the austral summer of 2010/2011, exposing marine communities to summer seawater temperatures 2‐5 °C warmer than average. Using a combination of satellite imagery and in situ assessments, we provide detailed maps of seagrass coverage across the entire Shark Bay World Heritage Area (ca. 13,000 km2) before (2002, 2010) and after the MHW (2014, 2016). Our temporal analysis of these maps documents the single largest loss in dense seagrass extent globally (1,310 km2) following an acute disturbance. Total change in seagrass extent was spatially heterogenous, with the most extensive declines occurring in the Western Gulf, Wooramel Bank and Faure Sill. Spatial variation in seagrass loss was best explained by a model that included an interaction between two heat stress metrics, the most substantial loss occurring when degree heat weeks (DHWm) was ≥ 10 and the number of days exposed to extreme sea surface temperature during the MHW (DaysOver) was ≥ 94. Ground‐truthing at 622 points indicated that change in seagrass cover was predominantly due to loss of Amphibolis antarctica rather than Posidonia australis, the other prominent seagrass at Shark Bay. As seawater temperatures continue to rise and the incidence of MHWs increase globally, this work will provide a basis for identifying areas of meadow degradation, or stability and recovery; and potential areas of resilience

    EpiCollect: Linking Smartphones to Web Applications for Epidemiology, Ecology and Community Data Collection

    Get PDF
    Epidemiologists and ecologists often collect data in the field and, on returning to their laboratory, enter their data into a database for further analysis. The recent introduction of mobile phones that utilise the open source Android operating system, and which include (among other features) both GPS and Google Maps, provide new opportunities for developing mobile phone applications, which in conjunction with web applications, allow two-way communication between field workers and their project databases.Here we describe a generic framework, consisting of mobile phone software, EpiCollect, and a web application located within www.spatialepidemiology.net. Data collected by multiple field workers can be submitted by phone, together with GPS data, to a common web database and can be displayed and analysed, along with previously collected data, using Google Maps (or Google Earth). Similarly, data from the web database can be requested and displayed on the mobile phone, again using Google Maps. Data filtering options allow the display of data submitted by the individual field workers or, for example, those data within certain values of a measured variable or a time period.Data collection frameworks utilising mobile phones with data submission to and from central databases are widely applicable and can give a field worker similar display and analysis tools on their mobile phone that they would have if viewing the data in their laboratory via the web. We demonstrate their utility for epidemiological data collection and display, and briefly discuss their application in ecological and community data collection. Furthermore, such frameworks offer great potential for recruiting 'citizen scientists' to contribute data easily to central databases through their mobile phone

    Digital Exclusion as a barrier to accessing healthcare: A summary composite indicator and online tool to explore and quantify local differences in levels of exclusion

    Get PDF
    Digital exclusion leads to marginalization and inequality. A lack of tools to measure local exclusion hampers targeted interventions. In this study a composite indicator for digital exclusion and associated toolkit was developed. Indicator variables were normalised and aggregated. Factor analysis determined indicator weightings. Local levels of claiming Guaranteed Pension Credit, unemployment and low socioeconomic status showed strong mutual correlation. Underlying constructs were identified related to socioeconomic deprivation, poor academic qualifications, lack of activity and barriers to digital access. In general, coastal areas in Lincolnshire, UK had higher levels of digital exclusion, with significant local disparities within urban areas. The Lincolnshire Digital Health toolkit assists decision-makers in understanding and addressing digital exclusion

    Group-based trajectory models: assessing adherence to antihypertensive medication in older adults in a community pharmacy setting.

    Get PDF
    Antihypertensive medication nonadherence is highly prevalent, leading to uncontrolled blood pressure. Methods that facilitate the targeting and tailoring of adherence interventions in clinical settings are required. Group-Based Trajectory Modeling (GBTM) is a newer method to evaluate adherence using pharmacy dispensing (refill) data that has advantages over traditional refill adherence metrics (e.g. Proportion of Days Covered) by identifying groups of patients who may benefit from adherence interventions, and identifying patterns of adherence behavior over time that may facilitate tailoring of an adherence intervention. We evaluated adherence to antihypertensive medication in 905 patients over a 12-month period in a community pharmacy setting using GBTM, identifying three subgroups of adherence patterns: 52.8%, 40.7%, and 6.5% had very high, high, and low adherence, respectively. However, GBTM failed to demonstrate predictive validity with blood pressure at 12 months. Further research on the validity of adherence measures that facilitate interventions in clinical settings is required

    Smchd1-Dependent and -Independent Pathways Determine Developmental Dynamics of CpG Island Methylation on the Inactive X Chromosome

    Get PDF
    X chromosome inactivation involves multiple levels of chromatin modification, established progressively and in a stepwise manner during early development. The chromosomal protein Smchd1 was recently shown to play an important role in DNA methylation of CpG islands (CGIs), a late step in the X inactivation pathway that is required for long-term maintenance of gene silencing. Here we show that inactive X chromosome (Xi) CGI methylation can occur via either Smchd1-dependent or -independent pathways. Smchd1-dependent CGI methylation, the primary pathway, is acquired gradually over an extended period, whereas Smchd1-independent CGI methylation occurs rapidly after the onset of X inactivation. The de novo methyltransferase Dnmt3b is required for methylation of both classes of CGI, whereas Dnmt3a and Dnmt3L are dispensable. Xi CGIs methylated by these distinct pathways differ with respect to their sequence characteristics and immediate chromosomal environment. We discuss the implications of these results for understanding CGI methylation during development

    Gain, Loss and Divergence in Primate Zinc-Finger Genes: A Rich Resource for Evolution of Gene Regulatory Differences between Species

    Get PDF
    The molecular changes underlying major phenotypic differences between humans and other primates are not well understood, but alterations in gene regulation are likely to play a major role. Here we performed a thorough evolutionary analysis of the largest family of primate transcription factors, the Krüppel-type zinc finger (KZNF) gene family. We identified and curated gene and pseudogene models for KZNFs in three primate species, chimpanzee, orangutan and rhesus macaque, to allow for a comparison with the curated set of human KZNFs. We show that the recent evolutionary history of primate KZNFs has been complex, including many lineage-specific duplications and deletions. We found 213 species-specific KZNFs, among them 7 human-specific and 23 chimpanzee-specific genes. Two human-specific genes were validated experimentally. Ten genes have been lost in humans and 13 in chimpanzees, either through deletion or pseudogenization. We also identified 30 KZNF orthologs with human-specific and 42 with chimpanzee-specific sequence changes that are predicted to affect DNA binding properties of the proteins. Eleven of these genes show signatures of accelerated evolution, suggesting positive selection between humans and chimpanzees. During primate evolution the most extensive re-shaping of the KZNF repertoire, including most gene additions, pseudogenizations, and structural changes occurred within the subfamily homininae. Using zinc finger (ZNF) binding predictions, we suggest potential impact these changes have had on human gene regulatory networks. The large species differences in this family of TFs stands in stark contrast to the overall high conservation of primate genomes and potentially represents a potent driver of primate evolution

    Gas-phase structures of sterically crowded disilanes studied by electron diffraction and quantum chemical methods : 1,1,2,2-tetrakis(trimethylsilyl) disilane and 1,1,2,2-tetrakis(trimethylsilyl)dimethyldisilane

    Get PDF
    The gas-phase structures of the disilanes 1,1,2,2-tetrakis(trimethylsilyl) disilane [(Me3Si)2HSiSiH(SiMe3)2] (1) and 1,1,2,2-tetrakis(trimethylsilyl)dimethyldisilane [(Me 3Si)2MeSiSiMe(SiMe3)2] (2) have been determined by density functional theoretical calculations and by gas electron diffraction (GED) employing the SARACEN method. For each of 1 and 2 DFT calculations revealed four C2-symmetric conformers occupying minima on the respective potential-energy surfaces; three conformers were estimated to be present in sufficient quantities to be taken into account when fitting the GED data. For (Me3Si)2RSiSiR(SiMe3)2 [R = H (1), CH3 (2)] the lowest energy conformers were found by GED to have RSiSiR dihedral angles of 87.7(17)° for 1 and -47.0(6)° for 2. For each of 1 and 2 the presence of bulky and flexible trimethylsilyl groups dictates many aspects of the geometric structures in the gas phase, with the molecules often adopting structures that reduce steric strain
    corecore