633 research outputs found
Effectiveness of slow motion video compared to real time video in improving the accuracy and consistency of subjective gait analysis in dogs
Objective measures of canine gait quality via force plates, pressure mats or kinematic analysis are considered superior to subjective gait assessment (SGA). Despite research demonstrating that SGA does not accurately detect subtle lameness, it remains the most commonly performed diagnostic test for detecting lameness in dogs. This is largely because the financial, temporal and spatial requirements for existing objective gait analysis equipment makes this technology impractical for
use in general practice. The utility of slow motion video as a potential tool to augment SGA is currently untested. To evaluate a more accessible way to overcome the limitations of SGA, a slow motion video study was undertaken. Three experienced veterinarians reviewed video footage of 30 dogs, 15 with a diagnosis of primary limb lameness based on history and physical examination, and 15 with no indication of limb lameness based on history and physical examination. Four different videos were made for each dog, demonstrating each dog walking and trotting in real time, and then again walking and trotting in 50% slow motion. For each video, the veterinary raters assessed both the degree of lameness, and which limb(s) they felt represented the source of the lameness. Spearmanâs rho, Cramerâs V, and t-tests were performed to determine if slow motion video increased either the accuracy or consistency of ratersâ SGA relative to real time video. Raters demonstrated no significant increase in consistency or accuracy in their SGA of slow motion video relative to real time video. Based on these findings, slow motion video does not increase the consistency or accuracy of SGA values. Further research is required to determine if slow motion video will benefit SGA in other ways
Extent of partial ice cover due to carbon cycle feedback in a zonal energy balance model
International audienceA global carbon cycle is introduced into a zonally averaged energy balance climate model. The physical model components are similar to those of Budyko (1969) and Sellers (1969). The new carbon components account for atmospheric carbon dioxide concentrations and the terrestrial and oceanic storage of carbon. Prescribing values for the sum of these carbon components, it is found that inclusion of a closed carbon cycle reduces the range of insolation over which stable partial ice cover solutions may occur. This highly simplified climate model also predicts that the estimated release of carbon from fossil fuel burning over the next hundred years could result in the eventual melting of the ice sheets. Keywords: climate, carbon cycle,zonal model, earth system modellin
CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2°C
Large amounts of carbon are stored in the permafrost of the northern high latitude land. As permafrost degrades under a warming climate, some of this carbon will decompose and be released to the atmosphere. This positive climate-carbon feedback will reduce the natural carbon sinks and thus lower anthropogenic CO2 emissions compatible with the goals of the Paris Agreement. Simulations using an ensemble of the JULES-IMOGEN intermediate complexity climate model (including climate response and process uncertainty) and a stabilization target of 2°C, show that including the permafrost carbon pool in the model increases the land carbon emissions at stabilization by between 0.09 and 0.19 Gt C year-1 (10th to 90th percentile). These emissions are only slightly reduced to between 0.08 and 0.16 Gt C year-1 (10th to 90th percentile) when considering 1.5°C stabilization targets. This suggests that uncertainties caused by the differences in stabilization target are small compared with those associated with model parameterisation uncertainty. Inertia means that permafrost carbon loss may continue for many years after anthropogenic emissions have stabilized. Simulations suggest that between 225 and 345 Gt C (10th to 90th percentile) are in thawed permafrost and may eventually be released to the atmosphere for stabilization target of 2°C. This value is 60 to 100 Gt C less for a 1.5°C target. The inclusion of permafrost carbon will add to the demands on negative emission technologies which are already present in most low emissions scenarios
Converging towards a common representation of largeâscale photosynthesis
A commentary on: Walker A.P., et al. (2021). Multiâhypothesis comparison of Farquhar and Collatz photosynthesis models reveals the unexpected influence of empirical assumptions at leaf and global scales. Global Change Biology 27(4): 804-822. Much ecological research has focused on determining how different environmental factors limit photosynthesis. Far less attention is placed on how to model the transition between limitations accurately as drivers change. Whether such changes are modelled as a single switch or there is an intermediate period of coâlimitation can have a substantial impact on the estimated levels of photosynthesis
Dual versus single source models for estimating surface temperature of African savannah
International audiencePredictions of average surface temperature of a sparsely vegetated West-African savannah by both single and dual source models of surface energy partitioning are compared. Within the single source model, the ``excess resistance" to heat transfer away from the canopy (compared to momentum absorption) is characterised by parameter kB-1, where k is the von KĂĄrmĂĄn constant and B is the Stanton number. Two values of this parameter are used; first kB-1 = 2 (a value often used within surface energy balance models but primarily applicable to permeable vegetation types) and then 12.4 (a value applicable to the savannah in question, which consists more of bluff roughness elements). As expected, the latter parameterisation generates better predictions of surface temperature. To make accurate predictions of surface temperature using a dual source model, then that model's in-canopy aerodynamic resistance must be increased. Information on this increase is found through direct model intercomparison with the single source model parameterised with kB-1 = 12.4. Keywords: Penman-Monteith equation; Surface temperature; Canopy resistance; Savannah; Dual-Source mode
Emergent constraints for the climate system as effective parameters of bulk differential equations
Planning for the impacts of climate change requires accurate projections by Earth system models (ESMs). ESMs, as developed by many research centres, estimate changes to weather and climate as atmospheric greenhouse gases (GHGs) rise, and they inform the influential Intergovernmental Panel on Climate Change (IPCC) reports. ESMs are advancing the understanding of key climate system attributes. However, there remain substantial inter-ESM differences in their estimates of future meteorological change, even for a common GHG trajectory, and such differences make adaptation planning difficult. Until recently, the primary approach to reducing projection uncertainty has been to place an emphasis on simulations that best describe the contemporary climate. Yet a model that performs well for present-day atmospheric GHG levels may not necessarily be accurate for higher GHG levels and vice versa. A relatively new approach of emergent constraints (ECs) is gaining much attention as a technique to remove uncertainty between climate models. This method involves searching for an inter-ESM link between a quantity that we can also measure now and a second quantity of major importance for describing future climate. Combining the contemporary measurement with this relationship refines the future projection. Identified ECs exist for thermal, hydrological and geochemical cycles of the climate system. As ECs grow in influence on climate policy, the method is under intense scrutiny, creating a requirement to understand them better. We hypothesise that as many Earth system components vary in both space and time, their behaviours often satisfy large-scale differential equations (DEs). Such DEs are valid at coarser scales than the equations coded in ESMs which capture finer high-resolution grid-box-scale effects. We suggest that many ECs link to such effective hidden DEs implicit in ESMs and that aggregate small-scale features. An EC may exist because its two quantities depend similarly on an ESM-specific internal bulk parameter in such a DE, with measurements constraining and revealing its (implicit) value. Alternatively, well-established process understanding coded at the ESM grid box scale, when aggregated, may generate a bulk parameter with a common âemergentâ value across all ESMs. This single emerging parameter may link uncertainties in a contemporary climate driver to those of a climate-related property of interest. In these circumstances, the EC combined with a measurement of the driver that is uncertain constrains the estimate of the climate-related quantity. We offer simple illustrative examples of these concepts with generic DEs but with their solutions placed in a conceptual EC framework.</p
Recommended from our members
Carbon budget for 1.5 and 2oC targets lowered by natural wetland and permafrost feedbacks
Methane emissions from natural wetlands and carbon release from permafrost thaw have a positive feedback on climate, yet are not represented in most state-of-the-art climate models. Furthermore, a fraction of the thawed permafrost carbon is released as methane, enhancing the combined feedback strength. We present simulations with an intermediate complexity climate model which follow prescribed global warming pathways to stabilisation at 1.5°C or 2.0°C above pre-industrial levels by the year 2100, and that incorporates a state-of-the-art global land surface model with updated descriptions of wetland and permafrost carbon release. We demonstrate that the climate feedbacks from those two processes are substantial. Specifically, permissible anthropogenic fossil fuel CO2 emission budgets are reduced by 17-23% (47-56 GtC) for stabilisation at 1.5°C, and 9-13% (52-57 GtC) for 2.0°C stabilisation. In our simulations these feedback processes respond faster at temperatures below 1.5°C, and the differences between the 1.5°C and 2°C targets are disproportionately small. This key finding is due to our interest in transient emission pathways to the year 2100 and does not consider the longer term implications of these feedback processes. We conclude that natural feedback processes from wetlands and permafrost must be considered in assessments of transient emission pathways to limit global warming
Mapping the three-body system - decay time and reversibility
In this paper we carry out a quantitative analysis of the three-body systems
and map them as a function of decaying time and intial conguration, look at
this problem as an example of a simple deterministic system, and ask to what
extent the orbits are really predictable. We have investigated the behavior of
about 200 000 general Newtonian three body systems using the simplest initial
conditions. Within our resolution these cover all the possible states where the
objects are initially at rest and have no angular momentum. We have determined
the decay time-scales of the triple systems and show that the distribution of
this parameter is fractal in appearance. Some areas that appear stable on large
scales exhibit very narrow strips of instability and the overall pattern,
dominated by resonances, reminds us of a traditional Maasai warrior shield.
Also an attempt is made to recover the original starting conguration of the
three bodies by backward integration. We find there are instances where the
evolution to the future and to the past lead to different orbits, in spite of
time symmetric initial conditions. This implies that even in simple
deterministic systems there exists an Arrow of Time.Comment: 8 pages, 9 figures. Accepted for publication in MNRAS. Includes
low-resolution figures. High-resolution figures are available as PNG
The compost bomb instability in the continuum limit
This is the final version. Available on open access from Springer Nature via the DOI in this record.Data availability: All code used in this paper to plot figures and run numerical simulations is available at http://www.github.com/josephjclarke/ContinuumCompostBombThe âCompost Bombâ instability refers to a proposed uncontrolled increase in soil temperature. This instability is caused when sufficiently rapid atmospheric warming increases soil heterotrophic respiration which, in turn, heats the soil further. This generates a runaway effect in which soil temperatures rise rapidly. We investigate this process, neglected in Earth system models, but which has thus far been analysed with a conceptual model using ordinary differential equations. That model is deliberately idealised without any representation of the spatial structure of soils. We confirm using a partial differential equation framework, this runaway effect still occurs when accounting for soil depth. Using this newer representation we investigate the forcing parameters that make soils vulnerable to this instability. In particular, we discover that the effect of dangerously large seasonal cycle variations in air temperature can create plausible conditions for a âcompost bombâ thermal instability.European Research Council âEmergent Constraints on Climate-Land feedbacks in the Earth System (ECCLES)â projectEuropean Union Horizon 2020Natural Environment Research Council (NERC
Vectors with autonomy: what distinguishes animal-mediated nutrient transport from abiotic vectors?
Animal movements are important drivers of nutrient redistribution that can affect primary productivity and biodiversity across various spatial scales. Recent work indicates that incorporating these movements into ecosystem models can enhance our ability to predict the spatio-temporal distribution of nutrients. However, the role of animal behaviour in animal-mediated nutrient transport (i.e. active subsidies) remains under-explored. Here we review the current literature on active subsidies to show how the behaviour of active subsidy agents makes them both ecologically important and qualitatively distinct from abiotic processes (i.e. passive subsidies). We first propose that animal movement patterns can create similar ecological effects (i.e. press and pulse disturbances) in recipient ecosystems, which can be equal in magnitude to or greater than those of passive subsidies. We then highlight three key behavioural features distinguishing active subsidies. First, organisms can transport nutrients counter-directionally to abiotic forces and potential energy gradients (e.g. upstream). Second, unlike passive subsidies, organisms respond to the patterns of nutrients that they generate. Third, animal agents interact with each other. The latter two features can form positive- or negative-feedback loops, creating patterns in space or time that can reinforce nutrient hotspots in places of mass aggregations and/or create lasting impacts within ecosystems. Because human-driven changes can affect both the space-use of active subsidy species and their composition at both population (i.e. individual variation) and community levels (i.e. species interactions), predicting patterns in nutrient flows under future modified environmental conditions depends on understanding the behavioural mechanisms that underlie active subsidies and variation among agents' contributions. We conclude by advocating for the integration of animal behaviour, animal movement data, and individual variation into future conservation efforts in order to provide more accurate and realistic assessments of changing ecosystem function
- âŠ