56 research outputs found

    Testing and Teaching

    Get PDF
    Testing and teaching are not adversarial, but each contributes to the accomplishment of the other

    Teacher-training in France

    Full text link
    Thesis (Ed.M.)--Boston University, 1934. This item was digitized by the Internet Archive

    Evaluating Four Inosine-Uridine Preferring Nucleoside Hydrolases in Bacillus Anthracis for Decontamination Strategies

    Get PDF
    Andrew Roser­ is a doctoral student in the School of Biological Sciences at Louisiana Tech University. Abigail Bass, Sophie Bott, Madison Brewton, Adam Broussard, Taylor Clement, Makenzie Cude, Hunter Currie, Claire Herke, Mary Hickman, Lauren James, Hailey Johnson, Madeline Lechtenberg, Sarah Murchison, Alex Plaisance, Wil Plants, Alex Sullivan, Sara Vandenberg, and Kaitlynn Willis are undergraduate students in the School of Biological Sciences at Louisiana Tech University. Rebecca Giorno is an Associate Professor in the School of Biological Sciences at Louisiana Tech University

    Volume 02

    Get PDF
    Introduction from Dean Dr. Charles Ross Mike\u27s Nite: New Jazz for an Old Instrument by Joseph A. Mann Investigation of the use of Cucumis Sativus for Remediation Of Chromium from Contaminated Environmental Matrices: An Interdisciplinary Instrumental Analysis Project by Kathryn J. Greenly, Scott E. Jenkins, and Andrew E. Puckette Development of GC-MS and Chemometric Methods for the Analysis of Accelerants in Arson Cases by Scott Jenkins Building and Measuring Scalable Computing Systems by Daniel M. Honey and Jeffery P. Ravenhorst Nomini Hall: A Case Study in the Use of Archival Resources as Guides for Excavation at An Archaeological Site by Jamie Elizabeth Mesrobian Two Stories: In Ohio and How to Stay Out of the Brazilian Army by Thomas Scott Forgerson des Hommes/Stealing the Steel in Zola\u27s Men by Jay Crowell Paul Gauguin\u27s Escape into Primitivism by Sarah Spangenberg Lee Krasner, Abstract Expressionist by Amy S. Eason Artist Book “Paris” by Kenny Wolfe Artist Book “Sequence of Every Day” by Liz Hale Artist Book “Apple Tree” by Rachel Bouchard Artist Book “Not so Pretty in Pink” by Will Semonco Artist Book “Look into the Moon” by Carley York Artist Books “Extra” and “Green” by Ryan Higgenbothom Artist Book “Re-growing Appalachia” by Adrienne Heinbaugh Artist Books “Cheeziest”, “Uh-oh” and “The Girl with the Glasses” by Melissa Dorton “Self-Reflection” by Madeline Hunter Artist Book “The Princess and the Frog” by June Ashmore “Hunter’s Niche” and “The Wild” by Clark Barkley “To Thine Own Self be True” by Jay Haley “Not Funny” Ten-Minute Play Festiva

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore