18 research outputs found

    Snow Depth on Arctic and Antarctic Sea Ice Derived from Snow Buoys

    Get PDF
    The snow cover on sea ice received more and more attention in recent sea ice studies and model simulations, because its physical properties dominate many sea ice and upper ocean processes. In particular; the temporal and spatial distribution of snow depth is of crucial importance for the energy and mass budgets of sea ice, as well as for the interaction with the atmosphere and the oceanic freshwater budget. Snow depth is also a crucial parameter for sea ice thickness retrieval algorithms from satellite altimetry data. Recent time series of Arctic sea ice volume only use monthly snow depth climatology, which cannot take into account annual changes of the snow depth and its properties. For Antarctic sea ice, no such climatology is available. With a few exceptions, snow depth on sea ice is determined from manual in-situ measurements with very limited coverage of space and time. Hence the need for more consistent observational data sets of snow depth on sea ice is frequently highlighted. Here, we present time series measurements of snow depths on Antarctic and Arctic sea ice, recorded by an innovative and affordable platform. This Snow Buoy is optimized to autonomously monitor the evolution of snow depth on sea ice and will allow new insights into its seasonality. In addition, the instruments report air temperature and atmospheric pressure directly into different international networks, e.g. the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). We introduce the Snow Buoy concept together with technical specifications and results on data quality, reliability, and performance of the units. We highlight the findings from four buoys, which simultaneously drifted through the Weddell Sea for more than 1.5 years, revealing unique information on characteristic regional and seasonal differences. Finally, results from seven snow buoys co-deployed on Arctic sea ice throughout the winter season 2015/16 suggest the great importance of local effects, weather events, and potential influences of dynamic sea ice processes on snow accumulation

    Snow depth on Antarctic sea ice from autonomous measurements

    Get PDF
    The snow cover on sea ice received more and more attention in recent sea ice studies and model simulations, because its physical properties dominate many sea ice and upper ocean processes. In particular; the temporal and spatial distribution of snow depth is of crucial importance for the energy and mass budgets of sea ice, as well as for the interaction with the atmosphere and the oceanic freshwater budget. Snow depth is also a crucial parameter for sea ice thickness retrieval algorithms from satellite altimetry data. Recent time series of Arctic sea ice volume only use monthly snow depth climatology, which cannot take into account annual changes of the snow depth and its properties. For Antarctic sea ice, no such climatology is available. With a few exceptions, snow depth on sea ice is determined from manual in-situ measurements with very limited coverage of space and time. Hence the need for more consistent observational data sets of snow depth on sea ice is frequently highlighted. Here, we present time series measurements of snow depths on Antarctic sea ice, recorded by an innovative and affordable platform. This Snow Buoy is optimized to autonomously monitor the evolution of snow depth on sea ice and will allow new insights into its seasonality. In addition, the instruments report air temperature and atmospheric pressure directly into different international networks, e.g. the Global Telecommunication System (GTS). We introduce the Snow Buoy concept together with technical specifications and results on data quality, reliability, and performance of the units. We highlight the findings from four buoys, which simultaneously drifted through the Weddell Sea for more than 1.5 years, revealing unique information on characteristic regional and seasonal differences

    Online sea ice data platform: www.seaiceportal.de

    Get PDF
    There is an increasing public interest in sea ice information from both Polar Regions, which requires up-to-date background information and data sets at different levels for various target groups. In order to serve this interest and need, seaiceportal.de (originally: meereisportal.de) was developed as a comprehensive German knowledge platform on sea ice and its snow cover in the Arctic and Antarctic. It was launched in April 2013. Since then, the content and selection of data sets increased and the data portal received increasing attention, also from the international science community. Meanwhile, we are providing near-real time and archive data of many key parameters of sea ice and its snow cover. The data sets result from measurements acquired by various platforms as well as numerical simulations. Satellite observations of sea ice concentration, freeboard, thickness and drift are available as gridded data sets. Sea ice and snow temperatures and thickness as well as atmospheric parameters are available from autonomous platforms (buoys). Additional ship observations, ice station measurements, and mooring time series are compiled as data collections over the last decade. In parallel, we are continuously extending our meta-data and uncertainty information for all data sets. In addition to the data portal, seaiceportal.de provides general comprehensive background information on sea ice and snow as well as expert statements on recent observations and developments. This content is mostly in German in order to complement the various existing international sites for the German speaking public. We will present the portal, its content and function, but we are also asking for direct user feedback

    Um Das Geschichtsbild Des Protestantismus1)

    No full text

    Denker in Zerbrochener Welt1)

    No full text

    Empirical sea ice thickness retrieval during the freeze up period from SMOS high incident angle observations

    Get PDF
    Sea ice thickness information is needed for climate modeling and ship operations. Here a method to detect the thickness of sea ice up to 50 cm during the freezeup season based on high incidence angle observations of the Soil Moisture and Ocean Salinity (SMOS) satellite working at 1.4 GHz is suggested. By comparison of thermodynamic ice growth data with SMOS brightness temperatures, a high correlation to intensity and an anti correlation to the difference between vertically and horizontally polarised brightness temperatures at incidence angles between 40 and 50 ° are found and used to develop an empirical retrieval sensitive to thin sea ice up to 50 cm thickness. It shows high correlations with ice thickness data from airborne measurements and reasonable ice thickness patterns for the Arctic freeze up period

    Snow depth on Arctic and Antarctic sea ice derived from new autonomous Snow Buoy measurements

    Get PDF
    More observations of snow depth on sea ice are urgently needed for various applications in polar and climate research. Large-scale and seasonal snow depth products are required for many in-situ, remote sensing, and numerical modelling applications. We developed a new buoy type to obtain time series of snow depth (and air temperature) on Arctic and Antarctic sea ice. The buoy is based on four sonic ranging sensors, and transmits the data via Iridium satellites. The buoy concept and design are based on low unit costs and easy deployment. Snow buoys proved to be most valuable when co-deployed with other buoy types. Near real time data sharing into international networks for a large user community: GTS, buoy program

    Snow depth and air temperature on sea ice derived from autonomous Snow Buoy measurements

    Get PDF
    More observations of snow depth on sea ice are urgently needed for various applications in polar and climate research. Large-scale and seasonal snow depth products are required for many in-situ, remote sensing, and numerical modelling applications. We developed a new buoy type to obtain time series of snow depth and air temperature on Arctic and Antarctic sea ice. The buoy is based on four sonic ranging sensors, and transmits the data via Iridium satellites. The buoy concept and design are based on low unit costs and easy deployment. Snow buoys proved to be most valuable when co-deployed with other buoy types. Near real time data sharing into international networks for a large user community: GTS, buoy programs
    corecore