1,989 research outputs found

    Bostonia. Volume 4

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs

    Sustainable Water Infrastructure:Visions and Options for Sub-Saharan Africa

    Get PDF
    Developing a sustainable water infrastructure entails the planning and management of water systems to ensure the availability, access, quality, and affordability of water resources in the face of social, environmental, and economic challenges. Sub-Saharan Africa (SSA) is currently in an era where it must make significant changes to improve the sustainability of its water infrastructure. This paper reviews the factors affecting water infrastructure sustainability and the interventions taken globally to address these challenges. In parallel, it reflects on the relevance of these interventions to the context of Sub-Saharan Africa through the lens of the STEEP (societal, technological, economic, environmental, political) framework. The paper goes on to recommend an extended analysis that captures additional critical dimensions when applying the concept of sustainability. Furthermore, this paper sheds light on the practice of sustainable development and fosters a deeper understanding of the issues, thereby forming the basis for further research and the development of sustainable and resilient solutions for water infrastructure and water asset management more generally

    Handling qualities of a wide-body transport airplane utilizing Pitch Active Control Systems (PACS) for relaxed static stability application

    Get PDF
    Piloted simulation studies have been conducted to evaluate the effectiveness of two pitch active control systems (PACS) on the flying qualities of a wide-body transport airplane when operating at negative static margins. These two pitch active control systems consisted of a simple 'near-term' PACS and a more complex 'advanced' PACS. Eight different flight conditions, representing the entire flight envelope, were evaluated with emphasis on the cruise flight conditions. These studies were made utilizing the Langley Visual/Motion Simulator (VMS) which has six degrees of freedom. The simulation tests indicated that (1) the flying qualities of the baseline aircraft (PACS off) for the cruise and other high-speed flight conditions were unacceptable at center-of-gravity positions aft of the neutral static stability point; (2) within the linear static stability flight envelope, the near-term PACS provided acceptable flying qualities for static stabilty margins to -3 percent; and (3) with the advanced PACS operative, the flying qualities were demonstrated to be good (satisfactory to very acceptable) for static stabilty margins to -20 percent

    Measuring electrophysiological connectivity by power envelope correlation: a technical review on MEG methods

    Get PDF
    The human brain can be divided into multiple areas, each responsible for different aspects of behaviour. Healthy brain function relies upon efficient connectivity between these areas and, in recent years, neuroimaging has been revolutionised by an ability to estimate this connectivity. In this paper we discuss measurement of network connectivity using magnetoencephalography (MEG), a technique capable of imaging electrophysiological brain activity with good (~5mm) spatial resolution and excellent (~1ms) temporal resolution. The rich information content of MEG facilitates many disparate measures of connectivity between spatially separate regions and in this paper we discuss a single metric known as power envelope correlation. We review in detail the methodology required to measure power envelope correlation including i) projection of MEG data into source space, ii) removing confounds introduced by the MEG inverse problem and iii) estimation of connectivity itself. In this way, we aim to provide researchers with a description of the key steps required to assess envelope based functional networks, which are thought to represent an intrinsic mode of coupling in the human brain. We highlight the principal findings of the techniques discussed, and furthermore, we show evidence that this method can probe how the brain forms and dissolves multiple transient networks on a rapid timescale in order to support current processing demand. Overall, power envelope correlation offers a unique and verifiable means to gain novel insights into network coordination and is proving to be of significant value in elucidating the neural dynamics of the human connectome in health and disease

    Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change

    Get PDF
    The determinants of the structure, functioning and resilience of pelagic ecosystems across most of the polar regions are not well known. Improved understanding is essential for assessing the value of biodiversity and predicting the effects of change (including in biodiversity) on these ecosystems and the services they maintain. Here we focus on the trophic interactions that underpin ecosystem structure, developing comparative analyses of how polar pelagic food webs vary in relation to the environment. We highlight that there is not a singular, generic Arctic or Antarctic pelagic food web, and, although there are characteristic pathways of energy flow dominated by a small number of species, alternative routes are important for maintaining energy transfer and resilience. These more complex routes cannot, however, provide the same rate of energy flow to highest trophic-level species. Food-web structure may be similar in different regions, but the individual species that dominate mid-trophic levels vary across polar regions. The characteristics (traits) of these species are also different and these differences influence a range of food-web processes. Low functional redundancy at key trophic levels makes these ecosystems particularly sensitive to change. To develop models for projecting responses of polar ecosystems to future environmental change, we propose a conceptual framework that links the life histories of pelagic species and the structure of polar food webs

    Approximating turbulent and non-turbulent events with the Tensor Train decomposition method

    Get PDF
    Low-rank multilevel approximation methods are often suited to attack high-dimensional problems successfully and they allow very compact representation of large data sets. Specifically, hierarchical tensor product decomposition methods, e.g., the Tree-Tucker format and the Tensor Train format emerge as a promising approach for application to data that are concerned with cascade-of-scales problems as, e.g., in turbulent fluid dynamics. Beyond multilinear mathematics, those tensor formats are also successfully applied in e.g., physics or chemistry, where they are used in many body problems and quantum states. Here, we focus on two particular objectives, that is, we aim at capturing self-similar structures that might be hidden in the data and we present the reconstruction capabilities of the Tensor Train decomposition method tested with 3D channel turbulence flow data

    The composite starburst/AGN nature of the superwind galaxy NGC 4666

    Full text link
    We report the discovery of a Compton-thick AGN and of intense star-formation activity in the nucleus and disk, respectively, of the nearly edge-on superwind galaxy NGC 4666. Spatially unresolved emission is detected by BeppoSAX only at energies <10 keV, whereas spatially resolved emission from the whole disk is detected by XMM-Newton. A prominent (EW ~ 1-2 keV) emission line at ~6.4 keV is detected by both instruments. From the XMM-Newton data alone the line is spectrally localized at E ~ 6.42 +/- 0.03 keV, and seems to be spatially concentrated in the nuclear region of NGC 4666. This, together with the presence of a flat (Gamma ~ 1.3) continuum in the nuclear region, suggests the existence of a strongly absorbed (i.e., Compton-thick) AGN, whose intrinsic 2-10 keV luminosity is estimated to be L_{2-10} > 2 x 10^{41} erg/s. At energies <1 keV the integrated (BeppoSAX) spectrum is dominated by a ~0.25 keV thermal gas component distributed throughout the disk (resolved by XMM-Newton). At energies ~2-10 keV, the integrated spectrum is dominated by a steep (G > 2) power-law (PL) component. The latter emission is likely due to unresolved sources with luminosity L ~ 10^{38} - 10^{39} erg/s that are most likely accreting binaries (with BH masses <8 M_sun). Such binaries, which are known to dominate the X-ray point-source luminosity in nearby star-forming galaxies, have Gamma ~ 2 PL spectra in the relevant energy range. A Gamma ~ 1.8 PL contribution from Compton scattering of (the radio-emitting) relativistic electrons by the ambient FIR photons may add a truly diffuse component to the 2-10 keV emission.Comment: A&A, in press (10 pages, 14 figures.) Full gzipped psfile obtainable from http://www.bo.iasf.cnr.it/~malaguti/r_stuff.htm

    Ursinus College Alumni Journal, August 1966

    Get PDF
    Departure day • Guidance • Counseling Ursinus students • Guiding high school students • Bertolt Brecht in America and East Berlin • From the President • The other side of the desk • Ursinus grizzly leaps the first Alumni Centennial Fund hurdle • A debate on war livens Alumni Day • Ups & downs of progress • Sporting scene: Lacrosse; Top athlete graduates; Wrestling; Tennis; Baseball; Track • Regionals: Each spring meeting has a style of its own • Campus clippings • Class notebook • Weddings • Births • In memoriamhttps://digitalcommons.ursinus.edu/alumnijournal/1086/thumbnail.jp
    • …
    corecore