35 research outputs found

    Evaluation of First-Order Actuator Dynamics and Linear Controller for a Bio-Inspired Rotating Empennage Fighter Aircraft

    Get PDF
    This paper considers the problem of stabilizing a bio-inspired fighter aircraft variant at its Air Combat Maneuver Condition. The aircraft equations of motion are linearized, and an infinite-horizon linear quadratic regulator design is conducted for this aircraft. Included in the dynamics are first-order actuator models, which have the effect of slowing actuator responses. This is particularly important for the bio-inspired variant because it requires rotation of the empennage, which has relatively large inertia. The bio-inspired variant open-loop system is unstable in the short period and Dutch roll modes, which is mitigated in the closed-loop system. Monte Carlo simulation responses to initial condition dispersions, aerodynamic model errors, and atmospheric turbulence are presented for the controlled aircraft system. These simulations demonstrate the robust properties of the presented control design. Discussion is dedicated to control designs neglecting input from throttle and the rotating tail, and corresponding successes. Whereas the bio-inspired variant aircraft can be successfully controlled without rotating tail input, effects from neglecting throttle input show throttle should be included, but perhaps in an alternate loop such as a speed controller

    Differential MicroRNA Expression of miR-21 and miR-155 with Oral Cancer Extracellular Vesicles in Response to Melationin

    Get PDF
    Objective: Extracellular vesicles derived from oral cancer cells, which include Exosomes and Oncosomes, are membranous vesicles secreted into the surrounding extracellular environment. These extracellular vesicles can regulate and modulate oral squamous cell carcinoma (OSCC) progression through the horizontal transfer of bioactive molecules including proteins, lipids and microRNA (miRNA). The primary objective of this study was to examine the potential to isolate and evaluate extracellular vesicles (including exosomes) from various oral cancer cell lines and to explore potential differences in miRNA content. Methods: The OSCC cell lines SCC9, SCC25 and CAL27 were cultured in DMEM containing 10% exosome-free fetal bovine serum. Cell-culture conditioned media was collected for exosome and extracellular vesicle isolation after 72 h. Isolation was completed using the Total Exosome Isolation reagent (Invitrogen) and extracellular vesicle RNA was purified using the Total Exosome RNA isolation kit (Invitrogen). Extracellular vesicle miRNA content was evaluated using primers specific for miR-16, -21, -133a and -155. Results: Extracellular vesicles were successfully isolated from all three OSCC cell lines and total extracellular vesicle RNA was isolated. Molecular screening using primers specific for several miRNA revealed differential baseline expression among the different cell lines. The addition of melatonin significantly reduced the expression of miR-155 in all of the OSCC extracellular vesicles. However, miR-21 was significantly increased in each of the three OSCC isolates. No significant changes in miR-133a expression were observed under melatonin administration. Conclusions: Although many studies have documented changes in gene expression among various cancers under melatonin administration, few studies have evaluated these effects on microRNAs. These results may be among the first to evaluate the effects of melatonin on microRNA expression in oral cancers, which suggests the differential modulation of specific microRNAs, such as miR-21, miR-133a and miR-155, may be of significant importance when evaluating the mechanisms and pathways involved in melatonin-associated anti-tumor effects

    Variation of organic matter quantity and quality in streams at Critical Zone Observatory watersheds

    Get PDF
    The quantity and chemical composition of dissolved organic matter (DOM) in surface waters influence ecosystem processes and anthropogenic use of freshwater. However, despite the importance of understanding spatial and temporal patterns in DOM, measures of DOM quality are not routinely included as part of large-scale ecosystem monitoring programs and variations in analytical procedures can introduce artifacts. In this study, we used consistent sampling and analytical methods to meet the objective of defining variability in DOM quantity and quality and other measures of water quality in streamflow issuing from small forested watersheds located within five Critical Zone Observatory sites representing contrasting environmental conditions. Results show distinct separations among sites as a function of water quality constituents. Relationships among rates of atmospheric deposition, water quality conditions, and stream DOM quantity and quality are consistent with the notion that areas with relatively high rates of atmospheric nitrogen and sulfur deposition and high concentrations of divalent cations result in selective transport of DOM derived from microbial sources, including in-stream microbial phototrophs. We suggest that the critical zone as a whole strongly influences the origin, composition, and fate of DOM in streams. This study highlights the value of consistent DOM characterization methods included as part of long-term monitoring programs for improving our understanding of interactions among ecosystem processes as controls on DOM biogeochemistry

    Investigation of the influence of leaf thickness on canopy reflectance and physiological traits in upland and Pima cotton populations

    Get PDF
    Many systems for field-based, high-throughput phenotyping (FB-HTP) quantify and characterize the reflected radiation from the crop canopy to derive phenotypes, as well as infer plant function and health status. However, given the technology’s nascent status, it remains unknown how biophysical and physiological properties of the plant canopy impact downstream interpretation and application of canopy reflectance data. In that light, we assessed relationships between leaf thickness and several canopy-associated traits, including normalized difference vegetation index (NDVI), which was collected via active reflectance sensors carried on a mobile FB-HTP system, carbon isotope discrimination (CID), and chlorophyll content. To investigate the relationships among traits, two distinct cotton populations, an upland (Gossypium hirsutum L.) recombinant inbred line (RIL) population of 95 lines and a Pima (G. barbadense L.) population composed of 25 diverse cultivars, were evaluated under contrasting irrigation regimes, water-limited (WL) and well-watered (WW) conditions, across three years. We detected four quantitative trait loci (QTL) and significant variation in both populations for leaf thickness among genotypes as well as high estimates of broad-sense heritability (on average, above 0.7 for both populations), indicating a strong genetic basis for leaf thickness. Strong phenotypic correlations (maximum r = - 0.73) were observed between leaf thickness and NDVI in the Pima population, but not the RIL population. Additionally, estimated genotypic correlations within the RIL population for leaf thickness with CID, chlorophyll content, and nitrogen discrimination (푟̂푔푖푗 = -0.32, 0.48, and 0.40, respectively) were all significant under WW but not WL conditions. Economically important fiber quality traits did not exhibit significant phenotypic or genotypic correlations with canopy traits. Overall, our results support considering variation in leaf thickness as a potential contributing factor to variation in NDVI or other canopy traits measured via proximal sensing, and as a trait that impacts fundamental physiological responses of plants

    Comparative Expression of Exosome-Derived Dental Pulp Stem Cell (DPSC) MicroRNA

    Full text link
    Introduction: Dental pulp stem cells (DPSC) are pluripotent stem cells capable of differentiating into several tissue types. Several studies have demonstrated DPSC can be extracted from deciduous and permanent teeth, including third molars (wisdom teeth) - however, much less is known regarding the factors that determine and regulate pluripotency and differentiation responsiveness among these harvested DPSC. Recent evidence has suggested small, non-coding microRNAs mediate (in part) differentiation and self-renewal among some stromal and hematopoetic stem cells, although much remains to be discovered regarding microRNA regulation of DPSC phenotypes. Based upon this information, the overall goal of this study was to determine if DPSC microRNA expression in exosomes correlates with DPSC phenotypes, such as differentiation status or growth. Methods: Six dental pulp stem cell (DPSC) isolates were retrieved from an existing repository and cultured. The original protocol for extraction and isolation of the DPSC was approved by the UNLV Biomedical IRB. Cells transferred into exosome-free media for 24 hours prior to exosome isolation and harvesting. Exosomes were analyzed using Particle Metrix Zeta view, Western blot analysis and qPCR screening. Results: All six DPSC cell lines were successfully established and cultured. Extracted exosome particle sizes ranged between 50 – 250 nm, corresponding with known exosome sizes. Bradford protein assays and Western Blots confirmed proteins (CD63) from isolated exosomes. RNA extraction and cDNA synthesis was performed in preparation for qPCR screening for microRNA expression with qPCR screening currently underway. Conclusions: These data confirm the successful isolation and characterization of DPSC exosomes and the corresponding RNA. qPCR screening revealed no correlation between miRNA expression and growth or differentiation status. Keywords: DPSC, miRNA, Exosome

    Differential MicroRNA Expression of miR-21 and miR-155 within Oral Cancer Extracellular Vesicles in Response to Melatonin

    No full text
    Objective: Extracellular vesicles derived from oral cancer cells, which include Exosomes and Oncosomes, are membranous vesicles secreted into the surrounding extracellular environment. These extracellular vesicles can regulate and modulate oral squamous cell carcinoma (OSCC) progression through the horizontal transfer of bioactive molecules including proteins, lipids and microRNA (miRNA). The primary objective of this study was to examine the potential to isolate and evaluate extracellular vesicles (including exosomes) from various oral cancer cell lines and to explore potential differences in miRNA content. Methods: The OSCC cell lines SCC9, SCC25 and CAL27 were cultured in DMEM containing 10% exosome-free fetal bovine serum. Cell-culture conditioned media was collected for exosome and extracellular vesicle isolation after 72 h. Isolation was completed using the Total Exosome Isolation reagent (Invitrogen) and extracellular vesicle RNA was purified using the Total Exosome RNA isolation kit (Invitrogen). Extracellular vesicle miRNA content was evaluated using primers specific for miR-16, -21, -133a and -155. Results: Extracellular vesicles were successfully isolated from all three OSCC cell lines and total extracellular vesicle RNA was isolated. Molecular screening using primers specific for several miRNA revealed differential baseline expression among the different cell lines. The addition of melatonin significantly reduced the expression of miR-155 in all of the OSCC extracellular vesicles. However, miR-21 was significantly increased in each of the three OSCC isolates. No significant changes in miR-133a expression were observed under melatonin administration. Conclusions: Although many studies have documented changes in gene expression among various cancers under melatonin administration, few studies have evaluated these effects on microRNAs. These results may be among the first to evaluate the effects of melatonin on microRNA expression in oral cancers, which suggests the differential modulation of specific microRNAs, such as miR-21, miR-133a and miR-155, may be of significant importance when evaluating the mechanisms and pathways involved in melatonin-associated anti-tumor effects

    Differential MicroRNA Expression of miR-21 and miR-155 within Oral Cancer Extracellular Vesicles in Response to Melatonin

    No full text
    Objective: Extracellular vesicles derived from oral cancer cells, which include Exosomes and Oncosomes, are membranous vesicles secreted into the surrounding extracellular environment. These extracellular vesicles can regulate and modulate oral squamous cell carcinoma (OSCC) progression through the horizontal transfer of bioactive molecules including proteins, lipids and microRNA (miRNA). The primary objective of this study was to examine the potential to isolate and evaluate extracellular vesicles (including exosomes) from various oral cancer cell lines and to explore potential differences in miRNA content. Methods: The OSCC cell lines SCC9, SCC25 and CAL27 were cultured in DMEM containing 10% exosome-free fetal bovine serum. Cell-culture conditioned media was collected for exosome and extracellular vesicle isolation after 72 h. Isolation was completed using the Total Exosome Isolation reagent (Invitrogen) and extracellular vesicle RNA was purified using the Total Exosome RNA isolation kit (Invitrogen). Extracellular vesicle miRNA content was evaluated using primers specific for miR-16, -21, -133a and -155. Results: Extracellular vesicles were successfully isolated from all three OSCC cell lines and total extracellular vesicle RNA was isolated. Molecular screening using primers specific for several miRNA revealed differential baseline expression among the different cell lines. The addition of melatonin significantly reduced the expression of miR-155 in all of the OSCC extracellular vesicles. However, miR-21 was significantly increased in each of the three OSCC isolates. No significant changes in miR-133a expression were observed under melatonin administration. Conclusions: Although many studies have documented changes in gene expression among various cancers under melatonin administration, few studies have evaluated these effects on microRNAs. These results may be among the first to evaluate the effects of melatonin on microRNA expression in oral cancers, which suggests the differential modulation of specific microRNAs, such as miR-21, miR-133a and miR-155, may be of significant importance when evaluating the mechanisms and pathways involved in melatonin-associated anti-tumor effects

    Balancing Authority Cooperation Concepts - Intra-Hour Scheduling

    No full text
    The overall objective of this study was to understand, on an Interconnection-wide basis, the effects intra-hour scheduling compared to hourly scheduling. Moreover, the study sought to understand how the benefits of intra-hour scheduling would change by altering the input assumptions in different scenarios. This report describes results of three separate scenarios with differing key assumptions and comparing the production costs between hourly scheduling and 10-minute scheduling performance. The different scenarios were chosen to provide insight into how the estimated benefits might change by altering input assumptions. Several key assumptions were different in the three scenarios, however most assumptions were similar and/or unchanged among the scenarios

    Multivariate Analysis of the Cotton Seed Ionome Reveals a Shared Genetic Architecture

    Get PDF
    To mitigate the effects of heat and drought stress, a better understanding of the genetic control of physiological responses to these environmental conditions is needed. To this end, we evaluated an upland cotton (Gossypium hirsutum L.) mapping population under water-limited and well-watered con- ditions in a hot, arid environment. The elemental concentrations (ionome) of seed samples from the pop- ulation were profiled in addition to those of soil samples taken from throughout the field site to better model environmental variation. The elements profiled in seeds exhibited moderate to high heritabilities, as well as strong phenotypic and genotypic correlations between elements that were not altered by the imposed irrigation regimes. Quantitative trait loci (QTL) mapping results from a Bayesian classification method identified multiple genomic regions where QTL for individual elements colocalized, suggesting that genetic control of the ionome is highly interrelated. To more fully explore this genetic architecture, multivariate QTL mapping was implemented among groups of biochemically related elements. This analysis revealed both additional and pleiotropic QTL responsible for coordinated control of phenotypic variation for elemental accumulation. Machine learning algorithms that utilized only ionomic data predicted the irrigation regime under which genotypes were evaluated with very high accuracy. Taken together, these results demonstrate the extent to which the seed ionome is genetically interrelated and predictive of plant physiological responses to adverse environmental conditions

    WINDS Model Simulation of Guayule Irrigation

    No full text
    The WINDS (Water-Use, Irrigation, Nitrogen, Drainage, and Salinity) model uses the FAO56 dual crop coefficient and a daily time-step soil–water balance to simulate evapotranspiration and water content in the soil profile. This research calibrated the WINDS model for simulation of guayule under full irrigation. Using data from a furrow irrigated two-season guayule experiment in Arizona, this research developed segmented curves for guayule basal crop coefficient, canopy cover, crop height and root growth. The two-season guayule basal crop coefficient (Kcb) curve included first and second season development, midseason, late-season and end-season growth stages. For a fully irrigated guayule crop, the year one midseason Kcb was 1.14. The second year Kcb development phase began after the crop was semi-dormant during the first winter. The second year Kcb value was 1.23. The two-season root growth curve included a growth phase during the first season, no growth during winter, and a second growth phase during the second winter. A table allocated fractions of total transpiration to soil layers as a function of root depth. With the calibrated tables and curves, the WINDS model simulated soil moisture content with a root mean squared error (RMSE) of 1- to 3-% volumetric water content in seven soil layers compared with neutron probe water contents during the two-year growth cycle. Thus, this research developed growth curves and accurately simulated evapotranspiration and water content for a two-season guayule crop
    corecore