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ABSTRACT To mitigate the effects of heat and drought stress, a better understanding of the genetic
control of physiological responses to these environmental conditions is needed. To this end, we evaluated
an upland cotton (Gossypium hirsutum L.) mapping population under water-limited and well-watered con-
ditions in a hot, arid environment. The elemental concentrations (ionome) of seed samples from the pop-
ulation were profiled in addition to those of soil samples taken from throughout the field site to better
model environmental variation. The elements profiled in seeds exhibited moderate to high heritabilities, as
well as strong phenotypic and genotypic correlations between elements that were not altered by the
imposed irrigation regimes. Quantitative trait loci (QTL) mapping results from a Bayesian classification
method identified multiple genomic regions where QTL for individual elements colocalized, suggesting
that genetic control of the ionome is highly interrelated. To more fully explore this genetic architecture,
multivariate QTL mapping was implemented among groups of biochemically related elements. This analysis
revealed both additional and pleiotropic QTL responsible for coordinated control of phenotypic variation
for elemental accumulation. Machine learning algorithms that utilized only ionomic data predicted the
irrigation regime under which genotypes were evaluated with very high accuracy. Taken together, these
results demonstrate the extent to which the seed ionome is genetically interrelated and predictive of plant
physiological responses to adverse environmental conditions.
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Plant growth, development, and survival are highly dynamic processes
that can be altered by a myriad of favorable and adverse environmental
conditions including abiotic stresses such as water deficit and high

temperature. The physiological responses of plants to changing envi-
ronmental conditions are difficult to observe and quantify at the
population level, thus unraveling the genetic mechanisms responsible
for the variability of these traits remains a formidable challenge. This is
especially true for understanding plant nutrient and mineral uptake,
which occurs below ground and is obscured by the soil environment.
Because of the challenges associated with phenotyping below-ground
traits such as root architecture and resource capture, there exists a gap in
our knowledge about these fundamental biological mechanisms.

Elemental uptake is a critical function driven by physiological and
biochemical processes occurring throughout the life cycle of a plant.
Many factors affect elemental accumulation including availability in the
soil environment, bioavailability within the plant, and the ability of the
plant to mobilize and translocate them throughout cells and tissues.
Additionally, physiological parameters such as root depth, permeability
of root barriers, and rate of transpiration all affect the capacity of
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elements to enter and move throughout the plant. As a result, the
elemental content and composition (the ionome) of plant tissues such as
leaf and seed can be considered a “readout” of the summation of these
processes and thus provide insight into plant stress response (Salt et al.,
2008).

Plant ionomic analysis was originally developed in Arabidopsis,
where it was used to identify elemental accumulation mutants and
characterize their physiological responses to the environment (Lahner
et al., 2003). This approach, wherein the elemental composition of plant
tissues is described and useful genetic mutants identified, has been
extended to a variety of species including rice (Norton et al., 2010;
Zhang et al., 2014; Pinson et al., 2015), maize (Baxter et al., 2013;
Baxter et al., 2014; Mascher et al., 2014; Gu et al., 2015; Asaro et al.,
2016), barley (Wu et al., 2013), soybean (Ziegler et al., 2013; Huber
et al., 2016), tomato (Sánchez-Rodríguez et al., 2010), and other crops
(Chen et al., 2009; White et al., 2012; Shakoor et al., 2016). These
studies have shown that elemental traits are heritable and thus amena-
ble to genetic mapping, but they have also demonstrated that individual
elements exhibit phenotypic correlations that could arise from shared
genetic control, overlap in membrane transporters at the cellular level,
common physiochemical properties in the soil and rhizosphere, mac-
roscale environmental conditions, or some combination of these fac-
tors. One such set of factors that may have an impact on the ionome are
heat and drought stresses, environmental conditions that not only
affect the plant itself through water availability but also through mod-
ification of the soil environment from which nutrients are acquired
(Vietz 1972).

Heat and drought are two of the most common abiotic stresses that
occur simultaneously in agricultural production areas, often with dev-
astating effects on yield and economic returns (Rizhsky et al., 2002;
Fannin 2012). At the cellular level, these stresses affect photosynthesis
through adverse regulation of stomata and resulting CO2 uptake,
thereby decreasing whole plant health and fitness (Chaves et al.,
2003; Taiz and Zeiger 2006; Prasad et al., 2008). Increased variability
in weather patterns could have a significant impact on crop yields, as
well as threaten the manufacture of critical bio-based commodities in
agricultural areas already at risk (Wheeler and von Braun 2013;
Thornton et al., 2014). Expanding the understanding of how plants
respond to abiotic stress at the physiological level has the potential to
help optimize breeding strategies focused on improving crop stress
resilience. Nowhere is this truer than for cotton (Gossypium spp.), a
crop with no naturally occurring substitute that can be produced on the
scale demanded by economic markets.

Cotton is the most widely grown fiber crop in the world, being
produced in over 80 countries and responsible for a multi-billion dollar
industry. In 2016, 21 million metric tons of cotton fiber were produced
globally (Cotton Inc 2017). In the US, the largest global exporter of
cotton, the annual value of the crop is over $5 billion, translating into
$25 billion generated in value-added products and services (USDA
Economic Research Service 2015). Currently, 65% of US cotton acreage
is produced under rainfed agricultural systems, with global data reflect-
ing similar conditions in other countries (National Cotton Council of
America 2015). Because of this, cotton, like all crops, is threatened by
the effects of climate change including decreased rainfall, increased
temperatures, and highly variable weather patterns (Dabbert and Gore
2014). To contend with temperature and precipitation changes that are
unfavorable to crop growth, new technologies such as field-based, high-
throughput phenotyping have been investigated to support the more
efficient and effective development of stress-resilient cultivars (Thorp
et al., 2015; Pauli et al., 2016a; Pauli et al., 2016b). Ionomic profiling,
which can be done on seed, is a complementary technology that could

provide insight into the physiological status of the plant in relation to its
growing environment.

Tomakeprogress toward thisgoal,weassayed theelementalprofilesof
seed in an upland cotton (G. hirsutum L.) recombinant inbred line (RIL)
mapping population that was evaluated under two contrasting irrigation
regimes over three years. The 14 elements that were profiled were arsenic
(As), calcium (Ca), cobalt (Co), copper (Cu), iron (Fe), potassium (K),
magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni),
phosphorus (P), rubidium (Rb), sulfur (S), and zinc (Zn). Ionomic anal-
yses were also conducted on soil samples collected from multiple depths
throughout the field site where the population was grown in order to
investigate relationships between soil and seed elemental concentrations.
Complementary quantitative trait loci (QTL)mappingmethods, consist-
ing of Bayesian classification and frequentist multivariate approaches,
were employed to identify regions of the cotton genome controlling
phenotypic variation for elemental concentrations. To test whether the
ionome could serve as an indicator for environmental growing condi-
tions, various supervised machine learning methods were implemented
to predict the irrigation regime under which RILs were grown using only
the ionomic data. Empirical results of this study demonstrate that the
ionome is a dynamic system that responds in a coordinated manner due
to its shared genetic architecture, providing valuable information on the
physiological status of plants.

MATERIALS AND METHODS

Plant material and experimental design
The plant material and experimental design have been extensively
described in Pauli et al. (2016a). Briefly, 95 recombinant inbred lines
(RILs) from the TM-1·NM24016 biparental mapping population
(Percy et al., 2006; Gore et al., 2012) and commercial check cultivars
were evaluated at the Maricopa Agricultural Center (MAC) of the
University ofArizona located inMaricopa, AZ, in 2010-12. The 95RILs,
parental lines, and commercial cultivars were grown under two irriga-
tion regimes, water-limited (WL) andwell-watered (WW), at a field site
of predominantly sandy clay loam soil texture. Each year, the trial was
arranged in an alpha (0, 1) lattice design with two replications per
irrigation regime. Plots were one-row measuring 8.8 m in length with
1.02 m inter-row spacing, and thinned to a density of �4.1 plants m-2.
The trial was managed with conventional cotton cultivation practices.
Meteorological data were recorded by an automated Arizona Meteo-
rological Network (AZMET) weather station (ag.arizona.edu/azmet/
index.html) located 270 m from the field site (Brown 1989).

To establish the crop, several furrow irrigations were applied during
the first 10-14 days after planting, then subsurface drip irrigation (SDI)
was used for the remainder of the field season. In late May of each year
after plant establishment, neutron moisture probe access tubes were
installed to a depth of 1.6m at 56 selected locations throughout the field
with an equal number of tubes in the WL and WW treatment plots.
Weekly soil water content measurements in 0.2 m increments from a
depth of 0.1 to 1.5 m were made for all probe locations from early June
through early October in each year using field-calibrated neutron
moisture probes (Model 503,Campbell PacificNuclear, CPN,Martinez,
CA). The scheduling of the WW SDI treatment was performed using a
daily soil-water-balance model calculated over the cotton root zone as
previously described in Andrade-Sanchez et al. (2014). Soil-water-
balance model inputs included estimated daily crop evapotranspira-
tion (ETc) as determined from FAO-56 dual crop coefficient procedures
(Allen et al., 1998), metered irrigation depths, and precipitation data
from the AZMET weather station. For ETc, the cotton basal crop co-
efficient (Kcb) values were 0.15, 1.2, and 0.52 for the initial, mid-season,
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and end of season values, respectively. These parameters were con-
structed into an FAO-56 Kcb curve using the growth stage lengths
developed locally by Hunsaker et al. (2005) for a typical 155 day
cotton season. Additional crop and soil parameters used in calculat-
ing the daily soil water balance were as those presented in Hunsaker
et al. (2005; Table 3), with the exception of the fraction of soil wetted
by irrigation, which was reduced to 0.2 for the SDI.

Irrigations to theWWplotswere applied to refill the root zonewater
content to field capacity when approximately 35% of the available soil
water had been depleted. Starting mid-July, the WL plots received one
half of the irrigation amounts applied to the WW plots. The WL
irrigation regime was imposed when more than 50% of the plots were
atfirstflower tominimize the interactionof phenology andsoilmoisture
deficit. The weekly soil water content measurements for the WW
treatment were used to monitor the actual soil water depletion and
adjust the modeled soil-water-balance depletion when needed.

Soil and seed sampling for ionomic profiling
In 2010and2012, soil sampleswere collected from the 56neutron access
tube sites at five depth intervals: 0 – 30; 30 – 60; 60 – 90; 90 – 120; and
120 – 150 cm. The locations of neutron tubes for 2011 were the same as
for 2010, thus soil sampling was not repeated in 2011. In 2012, the
neutron probes were redistributed in the field and soil samples were
taken from the new neutron access tube sites. Soil sampling was per-
formed within each of the five depth intervals at a probe location (five
samples per 56 probe locations). The collected samples were homoge-
nized and then sent to the Donald Danforth Plant Science Center
(DDPSC) where they were dried and then ground to obtain a soil
particle size less than 4 mm. From these prepared soil samples, two
50 mg subsamples were taken per each depth interval within a probe
location and placed in digestion tubes for ionomic profiling.

Prior to mechanical harvest at the end of the season, 25 bolls were
harvested from each experimental plot and processed using a laboratory
10-saw gin. From the processed boll samples, six seeds were randomly
sampled and sent to DDPSCwhere they were individually weighed and
placed in digestion tubes for further processing.

Determination of elemental composition by ICP-MS
Samples for both soil and unground seed were digested, analyzed by
inductively coupled plasma mass spectrometry (ICP-MS), and data
corrected for loss of analyte during sample preparation and drift as
described in Ziegler et al. (2013). Briefly, both soil and unground seed
were separately digested in 2.5 mL nitric acid containing 20 parts per
billion (ppb) indium as a sample preparation internal standard at room
temperature overnight, then heated to 100� for 3 h and diluted to 10mL
using ultra-pure water (UPW). The nitric acid digestion of soil samples
is a partial digestion procedure. However, nitric acid digestion is suffi-
cient to provide an adequate sample of elemental content available for
biological uptake. Samples were diluted in-line with 5x volume of UPW
containing yttrium as an instrument internal standard using an ESI
prepFAST autodilution system. Elemental concentrations were mea-
sured using a Perkin Elmer Elan 6000 DRC-e mass spectrometer for all
seed samples and the 2012 soil samples. A Perkin Elmer NexION 350D
with helium mode enabled for improved removal of spectral interfer-
ences was used to measure elemental concentrations of the 2010 soil
samples. Instrument reported concentrations were corrected for the
yttrium and indium internal standards and a matrix matched control
(either pooled soil or pooled seed sample). The control was run every
10 samples to correct for element-specific instrument drift. The same
control was used in every ICP-MS run to correct for run-to-run variation.

To correct seed elemental concentrations for weight and run-to-run
variation, we followed the method of Asaro et al. (2016). Briefly, ele-
mental concentration was regressed against sample weight and ICP-MS
run. The residuals from this model reflected the deviance of samples
from the population mean and were used as the weight-normalized
phenotype. Because a uniform amount of soil was digested for each
sample, this normalization technique was not necessary for the soil
samples. Therefore, soil concentrations were simply converted to parts
per million, ppm, (mg analyte/kg sample) by dividing instrument re-
ported concentrations by the 50 mg sample weight.

Analyticaloutliers for seedsampleswere removedfirstusing thenon-
weight-normalized values and again after normalization. Outliers were
identified by analyzing the variance of the six seed replicate measure-
ments and excluding an elementalmeasurement from further analysis if
themedian absolute deviation (MAD)was greater than 6.2.After outlier
removal and weight-normalization, the elemental concentrations were
transformed to non-negative by adding a constant to every sample so
that the smallest value for each element quantified had a value greater
than 10. This was done to avoid boundary constraint issues during
variancecomponent estimation.Final concentrationswere calculatedby
taking themean of the six individual seed elemental concentrations and
reported as parts per billion, ppb.

Soil ionomic data analysis and spatial interpolation
To identify and remove significant outliers from the raw soil ionomic
data, we fitted a mixed linear model for each element in ASReml-R
version 3.0 (Gilmour et al., 2009). For the elements calcium (Ca),
arsenic (As), and iron (Fe), soil sample data were log transformed to
stabilize variances based on preliminary analyses using mixed linear
models. The full model (Equation 1) fitted to the data were as follows:

Yijkl ¼mþ yeari þ depthj þ probeðyearÞik
þ repðyearÞil þ depthðyear· probeÞijk þ eijkl (1)

in which Yijkl is an individual soil sample observation; m is the grand
mean; yeari is the effect of the ith year; depthj is the effect of the jth soil
sample depth; probe(year)ik is the effect of the kth neutron probe site
nested within the ith year; rep(year)il is the effect of the lth technical
replication of the homogenized soil sample taken from a neutron
probe site nested within the ith year; depth(year·probe)ijk is the effect
of the jth soil sample depth level nested within the kth neutron probe
site and ith year; and eijkl is the random error term following a normal
distribution with mean zero and variance s2. The model terms yeari
and depthj were fitted as fixed effects while all others were fitted as
random effects. To detect significant outliers, Studentized deleted
residuals (Neter et al., 1996) were used with degrees of freedom
calculated using the Kenward-Rogers approximation (Kenward and
Roger 1997).

Once all outliers were removed for each element, an iterative mixed
linear model fitting procedure of Equation 1 was conducted in
ASReml-R version 3.0 (Gilmour et al., 2009). Likelihood ratio tests
were conducted to remove all terms fitted as random effects from the
model that were not significant at a = 0.05 (Littell et al., 2006) to
generate a final, best fitted model for each element. This final model
was used to generate best linear unbiased predictors (BLUPs) for each
unique neutron probe location for 2010 and 2012. Sequential tests of
fixed effects were carried out with degrees of freedom calculated using
the Kenward-Rogers approximation. For those elements in which log
transformation was required (As, Ca, and Fe), BLUPs were back
transformed prior to further analyses.
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The calculated BLUPs for each neutron probe location within the
field were then utilized for spatial interpolation using geostatistical
methods. Conventionally in geostatistical analyses, an estimate of the
variogram model is calculated from the observed data points that
describe the spatial variability of the underlying processes in the given
physical area of study. The derived model accounting for the spatial
relationshipbetweensampling locations,whichdescribes the covariance
as a function of distance between points (Yates 1948), is then used to
predict the values at unsampled but known locations – this methodol-
ogy is known as kriging (Webster and Oliver 2007). Due to the sub-
jective nature of deriving empirical variograms, we used an iterative
model fitting procedure to obtain initial model parameters using the
automap package (Hiemstra et al., 2009) in R (R Core Team 2016). The
BLUPs for elements As, Ca, Fe, K, Mg, and P were log transformed to
stabilize variances for model fitting. Through implementation of the
‘autoKrige’ function in automap, eight spatial relationship models
(spherical, exponential, Gaussian, Matern, Bessel, circular, pentaspher-
ical, and Stein’s parameterization of Matern) were tested, and for each
spatial model used, seven values of the range parameter (the distance at
which spatial dependency is no longer present, values of 10, 15, 20, 25,
30, 35, and 40m) were iterated over to find the optimal value. All other
parameters (e.g., nugget variance and sill) were calculated by the soft-
ware. To assess the model fit for each combination of spatial model and
range distance, the sums of squares error was extracted from the fitted
model to determine reasonable starting values for all model parameters.

In the next step, the complete set of estimated parameters (range, sill,
nugget, bin width, and spatial model) from the best fitted model were
used as starting values to generate an initial empirical variogram using
the function “variogram” in the R package gstat (Pebesma 2004). The
generated empirical variogram and estimated parameters were then
passed to the auto-fitting function “fit.variogram” for further model
optimization and parameter estimation with sample point weightings
determined by Nj/h2j , whereN is the number of point pairs and h is the
distance between points. The final model for each element was then
assessed by visual inspection to ensure they were adequately capturing
the spatial variance structure and that the model fitting procedure
selected optimal parameters. The optimized models for each element
were then used to conduct block kriging whereby element concentra-
tions were predicted at the plot level for each georeferenced plot across
the experimental field site for the three years.

Seed ionomic data analysis
The processing of the seed ionomic data were similar to that of the soil
ionomicdata. Initially,wefittedamixed linearmodel for eachelement in
ASReml-R version 3.0 to identify and remove significant outliers from
the raw data. Unlike the soil ionomic data, no transformation of
elemental concentrations was required due to the weight normalization
step described above. The full model (Equation 2) fitted to the data were
as follows:

Yijklmn ¼mþ covariateijklmn þ yeari þ irgj þ repðirg · yearÞijk
þ columnðrep · irg · yearÞijkl þ blockðrep · irg · yearÞijkm
þ genotypen þ ðgenotype · yearÞin þ ðgenotype · irgÞjn
þ eijklmn;

(2)

in which Yijklmn is the elemental concentration observation represent-
ing the adjusted model residual from the weight normalization step;
covariateijklmn represents either flowering time (i.e., date of first

flower, Julian calendar) or the interpolated soil element concentration
for each observation; m is the grand mean; yeari is the effect of the ith
year; irgj is the effect of the jth irrigation regime (WW or WL); rep
(irg · year)ijk is the effect of the kth replication within the jth irriga-
tion regime within the ith year; column(rep · irg · year)ijkl is the effect
of the lth plot grid column within the kth replication within the jth
irrigation regime within the ith year; block(rep · irg · year)ijkm is the
effect of the mth incomplete block within the kth replication within
the jth irrigation regime within the ith year; genotypen is the effect
of the nth genotype; (genotype · year)in is the interaction effect be-
tween the nth genotype and the ith year; (genotype · irg)jn is the
interaction effect between the nth genotype and the jth irrigation
regime; and eijklmn is the random error term following a normal
distribution with mean zero and variance s2. The two covariates,
flowering time and soil element concentration, were tested individu-
ally for their significance at a = 0.05, and if found to be nonsignificant,
they were removed from the model. The model terms genotypen, irgj,
and (genotype · irg)jn were fitted as fixed effects, while all the other
terms were fitted as random effects. To detect significant outliers,
Studentized deleted residuals (Neter et al., 1996) were used with
degrees of freedom calculated using the Kenward-Rogers approxima-
tion (Kenward and Roger 1997).

Once outliers had been removed, iterative model fitting was con-
ducted as described above with nonsignificant random terms removed
from themodel at a thresholdofa=0.05. The bestfittedmodelwas then
used to generate both an overall (across three years) best linear un-
biased estimator (BLUE) and a within year BLUE for each separate
irrigation regime. Tests of model fixed effects were conducted as de-
scribed for the soil element analysis.

For each element, broad-sense heritability on an entry-mean basis
(Ĥ

2
) was estimated within each irrigation regime by reformulating

Equation 2 to remove the irrigation regime term. Next all terms were
fitted as random effects in order to estimate their respective variance
components; however, if the covariate was found to be statistically
significant it was retained in the model as a fixed effect. For each
element, the variance component estimates from each final model were
used to estimate Ĥ

2
(Holland et al., 2003) as follows:

Ĥ
2¼

cs2
g

cs2
g þ

bs2
gy

ny
þ bs2

e
np

; ¼
cs2
g

cs2
p

(3)

where cs2
g is the estimated genetic variance, cs2

gy is the estimated var-
iance associated with genotype-by-year variation, cs2

e is the residual
error variance, ny is the harmonic mean of the number of years in
which each genotype was observed, and np is the harmonic mean of
the number of plots in which each genotype was observed. The de-
nominator of equation 3 is equivalent to the phenotypic variance, ŝ2

p.
Standard errors of the estimated heritabilities were approximated
using the delta method (Lynch andWalsh 1998; Holland et al., 2003).

For each irrigation regime, genotypic (̂rgij) and phenotypic (̂rpij)
correlations between traits and their standard errors were estimated
using multivariate REML in PROC MIXED of SAS version 9.4 (SAS
Institute 2013) as previously described (Holland et al., 2001; Holland
2006). To eliminate model convergence issues arising from the differ-
ences in scale among the various elements, a data standardization pro-
cedure was implemented using PROC STANDARD in SAS version 9.4.
The BLUEs generated from Equation 2 for the two irrigation regimes
within the individual years (e.g., 2010 WL, 2010 WW) were standard-
ized to have a mean of zero and standard deviation of one prior to
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model fitting. The model used separately for each irrigation regime was
as follows:

Yijkl ¼ mþ yearðtraitÞijk þ genotypel þ ðyear · genotypeÞkl
þ eijkl (4)

where Yijkl are the paired BLUEs for the ith and jth traits; m is the
multivariate grand mean; year(trait)ijk is the effect of the kth year on
the combined ith and jth traits; genotypel is the effect of the lth ge-
notype; (year·genotype)kl is the effect of the interaction between the
kth year and the lth genotype; and eijkl is the random error term. The
terms genotypel and (year·genotype)kl were fitted as random effects
while year(trait)ijk was fitted as a fixed effect. The REPEATED state-
ment was used to estimate the covariance of the error associated with
the ith and jth trait BLUEs measured for the same genotype.

The formula for estimating genotypic correlations was as follows:

r̂gij ¼
ŝGij

ŝGiŝGj
(5)

where ŝGij is the estimated genotypic covariance between traits i and j,
ŝGi is the estimated genotypic standard deviation of trait i and ŝGj is
the estimated genotypic standard deviation of trait j.

The formula for estimating phenotypic correlations was as follows:

r̂pij ¼
bsPij

bsPibsPj
(6)

where ŝPij is the estimated phenotypic covariance between traits i and
j, ŝPi is the estimated phenotypic standard deviation of trait i and ŝPj

is the estimated phenotypic standard deviation of trait j. For both
genotypic and phenotypic correlations, significance was assessed by
computing the standard errors for the respective correlation values
using the delta method based on Taylor series expansion (Lynch and
Walsh 1998; Holland et al., 2003). A correlation value greater than
60.12 for either genotypic or phenotypic correlations corresponded
to a confidence interval not including zero, thus designated as a
statistically significant correlation (P , 0.05).

QTL analysis
The marker genotyping and genetic map construction for the
TM-1·NM24016 RILmapping population was previously reported in
Gore et al. (2014). Briefly, 841 marker loci, consisting of 429 simple-
sequence repeat (SSR) and 412 genotyping-by-sequencing (GBS)-
based single nucleotide polymorphism (SNP) loci, were assigned to
117 linkage groups covering �2,061 cM of the cotton genome. The
841 marker loci were not equally distributed across the genome. The
placement of markers on the allotetraploid cotton (G. hirsutum L. acc.
TM-1) draft genome assembly for marker-chromosome assignment
is described in Pauli et al. (2016a).

QTL mapping with Bayesian classification method: We employed a
Bayesian classification method to implement a multi-marker mapping
technique as described in Zhang et al. (2005) and Zhang et al. (2008).
Briefly, the goal of the analysis was to identify single markers that
explained a significant amount of the variability for the seed elemental
concentrations within each of the individual irrigation regimes. With a
total of n observations (or RILs) and m markers for each observation
(or RIL), let i = 1,2,. . .,n be the index for each observation (or RIL) and
j =1,2,. . ., m be the index for the markers across all linkage groups.

Then, the phenotypic value for the ith observation (or RIL) within an
irrigation regime, WL or WW, was modeled as follows:

yi ¼ mþ
Xm
j¼1

bjxij þ ei ei � N
�
0;s2� (7)

wherem is the overall mean, xij is the genotypic value of the jth marker
of individual i, and ei is the random error term from the environmen-
tal factors. In this model, the parameter of interest is bj, representing
the main effect of the jth marker. Note that this model allows simul-
taneous identification of main effects using marker information from
the entire genome.

Due to the large number of predictor variables in the model (i.e.,
markers) but relatively small number of observations available, the
inference/estimation was done via a Bayesian framework usingMarkov
chain Monte Carlo. The inference/estimation was implemented as a
two-step procedure using a Gibbs sampler. A priori information was
incorporated into the model by prior specification for the parameter of
interest (spike and slab prior where marker effect is either positive,
negative, or negligible), and estimation was based on the corresponding
posterior distributions. In the first step, all main marker effects were
ranked based on their posterior probabilities of having a non-zero effect
on the trait of interest, and in the second step, a subset of all marker
effects were selected. The number of effects selected in the first step
depended on the total number of observations to ensure that efficient
parameter estimates were obtained while keeping a desirable level of
statistical power.

The BLUEs for each of the profiled elements were fitted indepen-
dently within each of the irrigation regimes using Equation 7. In all
analyses, the first 5,000 iterations were discarded as burn-in period and
the following 5,000 iterationswere used for inference/estimation.Model
convergence was confirmed by the diagnostic tools presented in Cowles
and Carlin (1996). For each parameter of interest, we estimated its
magnitude and direction, as well as the posterior probabilities of being
greater or less than zero. These posterior probabilities were used to
calculate the Bayes factor as defined by Jeffreys (1935 and 1961). As
advised by Jeffreys (1961), a Bayes factor between 10 and 100 provides
“strong evidence” and larger than 100 means “decisive evidence.”
Therefore, a QTL was declared significant if it had a Bayes factor$100.

Seemingly unrelated regression analysis:We implemented seemingly
unrelated regression (SUR), a multi-trait (multivariate) analysis, to
identify QTL controlling phenotypic variation in multiple elemental
concentrations. As a generalization of linear regression models with
multiple responses, SUR was first proposed by Zellner more than half a
century ago (Zellner 1962) and has been successfully applied to ana-
lyzing high-dimensional metabolite data sets (Chen et al., 2015; Chen
et al., 2017). The method of SUR includes a set of multiple regression
equations with each equation representing one of the response variables
(i.e., a single elemental trait) of the multivariate response while assum-
ing that the error terms are correlated between equations. For our
analyses, elements were grouped according to their biological functions
as described in Taiz and Zeiger (2006) and Mengel and Kirkby (2012),
which created two groups with more than two elements. The “ionic”
group (Ca, K, Mg, and Mn) included elements that remain in ionic
form in plant tissue, and the “redox” group (Cu, Fe, Mo, Ni, and Zn)
that contained elements involved in oxidation/reduction reactions. For
each irrigation regime, WL or WW, the following model was fitted to
each of the three groups of elements:
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Yij ¼ b0j þ bkjXik þ eij (8)

where Yij denotes the concentration of each of the individual jth elements
within the defined elemental groupings for the ith RIL, b0j represents the
regression intercept, bkj is the regression coefficient for the Xik predictor
that denotes the genotype of the kth marker of the ith RIL, and eij is the
error term that follows N(0, s2

j ) and cov(eij, elk). Such potential correla-
tion structure among elemental traits allow the SURmodel to have higher
statistical power than linear regression models having only a single ele-
mental trait. Note that for different RILs when i 6¼ l, the term sjk is equal
to zero. The data for each element were standardized to have mean zero
and a standard deviation of one prior to the analysis, allowing regression
coefficient estimates and their associated 95% confidence intervals for
each element within a group to be comparable.

Nomenclature of QTL were defined by combining the elemental
name, chromosome assignment, linkage group, and peak marker po-
sition of the identified QTL having names preceding with “q” to denote
QTL. To declareQTL asmapping to the same location, we used a 10 cM
window to be consistent with previous studies of this population (Pauli
et al., 2016a).

Prediction of irrigation regime
We used the elemental concentration BLUEs generated for individual
years to predict whether genotypes were grown under WL or WW
conditions in the three years this study was conducted. First, the BLUEs
werestandardizedwithineachyear tohaveameanofzeroanda standard
deviation of one to account for the effect of each individual year (non-
reproducible environments). Next, we employed a cross-validation
strategy whereby two of the years were used to predict the remaining
year, for example, BLUEs from 2010 and 2011 were used to predict
irrigation regime in 2012. To assess the prediction accuracies, Pearson’s
correlation coefficient was calculated between observed and predicted
values. The various models tested in R (R Core Team 2016) were as
follows: logistic regression; linear discriminate analysis (LDA) and qua-
dratic discriminate analysis (QDA) implemented in the MASS package
(Venables and Ripley 2002); k-nearest neighbors (KNN) implemented in
the class package (Venables and Ripley 2002); and support vector ma-
chines (SVM) implemented in the e1071 package (Meyer et al., 2017).

To visualize and understand the relationship between irrigation
regimes and the RILs, the BLUEs calculated separately for each year
were used together to conduct a principal components analysis (PCA)
using the “prcomp” function in the stats package (R Core Team 2016).
In contrast to the prediction of irrigation regime, the BLUEs were not
centered and scaled prior to the PCA because this analysis was intended
to explore the observed relationships among the yearly fluctuations in
elemental concentrations.

Data availability
BLUPs calculated from the fitted mixed linear model for soil elemental
concentrations are contained in File S1. BLUEs, both overall and by-year,
for seed elemental concentrations are contained in File S2. Genotypic
data for the 95RILs from theTM-1·NM24016mapping populationwith
accompanying linkage map information are contained in File S3. File S4
contains the genetic linkage map information integrated with the pub-
lished TM-1 draft genome sequence (Zhang et al. 2015).

RESULTS

Soil elemental variability
The soil samples taken from throughout the experimental field site
demonstrated that spatial variability existed for the concentration of the

14 elements profiled (Figure S1 in File S5). A year effect of at least
moderately high significance was only found for K, Rb, S, and Zn
(P , 0.01, Table S1in File S5), although the effect of depth at which
soil samples were taken was highly significant for essentially all ele-
ments profiled. Because the year effect was weakly significant (P ,
0.05) or non-significant (P . 0.05) for 10 of the 14 elements, both
years of data were used in conducting geostatistical analyses to reveal
and quantify the spatially structured and heterogeneous nature of the
soil element concentrations across the field site (Figure 1). The fitted
models produced effective ranges of spatial correlation from 12.49 to
66.44 m, with an average distance of 26.68 m (Table S2 in File S5). As
expected, these results confirmed that concentrations of nearly all soil
elements were related in a distance-dependent manner throughout the
field. The only element that did not display any type of detectable
spatial relationship was sulfur, which had an estimated concentration
of 1089.90 ppm across the entire field site (Table S3 in File S5).

The soil conditions were not limiting for plant growth as the
concentration of key nutrients for cotton production in Arizona, which
are Fe, K,Mn, P, and Zn all hadminimum values exceeding production
recommendations (Table S3 in File S5) (Silvertooth 2001). Arsenic, an
element that can be toxic for plants, had an observedmaximumvalue of
4.99 ppm, which was well below the accepted threshold of 40 ppm
(Walsh et al., 1977). Given the empirical evidence provided by the soil
element analysis and the precision irrigation management used in this
experiment, we are confident that high temperature and water deficit
were the primary abiotic stresses impacting cotton plants from first
flower to harvest.

Seed ionome profiles
In order to understand how the seed ionome responds to abiotic stress,
two irrigation regimes, consisting of water-limited (WL) and well-
watered (WW) conditions, were imposed at flowering (50% of plots
at first flower) and continued throughout the remainder of the season
until harvest. Coinciding with the irrigation regimes, day time temper-
atures in the desert Southwest, on average, exceeded 32�, the threshold
above which lint yields are acutely impacted (Pauli et al., 2016a;
Schlenker and Roberts 2009). To control for the effects of localized soil
environment and phenological development, the interpolated soil ele-
mental concentrations and flowering time of genotypes were individ-
ually tested as covariates in the mixed linear model (Equation 2) to
assess their association with seed element concentrations. The only
elements that exhibited a significant (P , 0.05) linear relationship be-
tween seed and soil levels were Co, Mg, and Rb (Table S4 in File S5).
The seed element concentrations that had an association (P , 0.05)
with flowering time were As, Cu, and Ni (Table S4 in File S5). After
accounting for the effects of soil environment and phenology, we ob-
served significant genotypic differences (P, 0.0001) for all 14 elements;
however, only seven of the elements, Ca, Cu, Fe, Mg, Mo, S, and Zn,
displayed differences between the irrigation regimes. Of these seven
elements, only the concentration of Mg decreased under WL condi-
tions, while the concentrations of the other six elements increased un-
der WL conditions. Genotype-by-irrigation regime interactions were
only significant for Co, Mn, Mo, and S (Figure 2, Table S4 in File S5).

In terms of the relative seed elemental concentration values, which
were weight normalized and rescaled prior to analysis, the RIL pop-
ulation exhibited extensive phenotypic variation for the 14 elements
profiled (Table 1). The macronutrients Ca, K, Mg, P and S all had
average concentrations above 10,000 ppb with K being the element
in highest concentration with values over 46,000 ppb in both irrigation
regimes. Arsenic was the element with the lowest relative average con-
centration of only 10.58 and 10.53 ppb for WL and WW conditions,
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respectively, and Co was the second least abundant element with aver-
ages of 12.09 and 12.12 ppb for WL and WW regimes, respectively.
Both positive and negative transgressive segregation were observed for
most elements in the RIL population.

We estimated broad-sense heritabilities for the elements to deter-
mine the extent towhichphenotypicvariationwasattributable togenetic
variation in the RIL population. Heritability values were moderate to
high, ranging fromaminimumof0.32 (Zn,WWconditions, Figure2) to
amaximum of 0.92 (Cu,WL conditions).With the exception of the low
estimate for Zn under WW conditions, heritabilities were all greater
than 0.60. With regard to the heritability estimates between irrigation
regimes, there were no significant differences (two-sided t-test, P .
0.05). The ANOVA also revealed that the variance due to year effects
was large for most elements (. 40% for As, Co, K, Mg, Mn, P, Rb, and
S) and that the variances associated with the second- and third-order
interaction terms were small (Figure 2).

To characterize the relationship among the elements and potentially
shared regulation of seed elemental levels, we estimated pairwise pheno-
typic (̂rpij) and genotypic (̂rgij) correlations among the 14 elements. El-
ement pairs with strong phenotypic correlations under both irrigation
regimes (ranging from 0.51 to 0.77) included Mg/P, Mg/Zn, Mg/Fe,
Ca/Mn, Fe/Zn, and Zn/P, results in agreement with other plant studies
(Baxter et al., 2013; Zhang et al., 2014; Shakoor et al., 2016). Neither
major differences in terms of element pairings nor contrasts in correla-
tion strengths were observed between the two irrigation regimes (Figure
3, Table S5 in File S5). Phenotypic correlations were, on average, positive
with the exception of As, which was negatively correlated with all other
elements (Figure 3). The most highly correlated elements, Ca, Cu, Fe, Ni,
Mg, Mn, P, and Zn, were grouped together at the center of the network,
while micronutrients As, Co, Mo, and Rb were mostly on the perimeter
(Figure 3). Interestingly, K was one of the least correlated elements de-
spite being a macronutrient. It was primarily correlated with Rb, the only
other monovalent cation profiled, suggesting that chemical similarities
among the elements are responsible for their relatedness. The genotypic
correlations estimated for the TM-1·NM24016 RIL population closely

followed the pattern observed for the phenotypic correlations with re-
spect to strength and pairings (Figure 3, Table S5 and Table S6 in File S5).

QTL mapping
Themapping ofQTLutilizing a Bayesian classificationmethod detected
a total of 38 QTL that mapped to 15 chromosomes and 21 unique
genomic locations (Figure 4, Table S7 in File S5). Concerning the
two irrigation regimes, 16 and 22 QTL were detected under WL and
WW conditions, respectively. Only four QTL, qCu.A07.28.00,
qMg.A12.45.21, qNi.D12.116.00, and qP.A05.74.05, were detected for
both irrigation regimes. The number of QTL found per element varied
from one (Mo) to five (Mg and Rb). There were a total of five geno-
mic regions, located on chromosomes A05, A06, A12, D01, and D12,
to which two or more QTL mapped with all but A12 having ion pairs
(Ca/Mg, Fe/Zn, Cu/Ni, and Fe/Ni, respectively) with similar biochem-
ical properties. Several QTL mapped to chromosome A05, linkage
group 74, including for Fe, Mg, Ni, P, and Zn, indicating that this
genomic region has a significant impact on the cotton seed ionome.

We also implemented a more statistically powerful multi-trait
mapping approach (a multivariate analysis) to reveal QTL controlling
phenotypic variation for elements with similar properties. Elements
were first grouped based on their biochemical function creating two
groups of elements: “ionic” and “redox.”Both of these groups were then
analyzed using the method of seemingly unrelated regression (SUR) to
identify QTL impacting multiple elemental concentrations in cotton
seed. This multi-trait analysis identified 45 QTL that mapped to
18 chromosomes and 31 unique genomic locations (Figure 4, Table
S8 in File S5). Nearly an equal number of QTL were detected for each
irrigation regime, with 23 and 22 QTL found for the WL and WW
irrigation regimes, respectively. In contrast to the Bayesian mapping
approach, which only detected four QTL for both irrigation regimes,
the multi-trait analysis detected 14. Additionally, the multi-trait anal-
ysis also identified 10 QTL that, although detected with the Bayesian
classification approach, were not declared significant because they were
below the Bayes factor threshold of 100 (Table S9 in File S5).

Figure 1 Characterization of soil magnesium (Mg) concentration in the field site where the mapping population was evaluated. A) Variogram
representing spatial continuity of Mg variability; samples become spatially independent at a distance of 24.98 m. Values near the fitted line within
the plot denote the number of point pairs at a given distance. B) Interpolated Mg concentrations (log transformed, parts per million) throughout
the field. Black and red colored dots represent the sampling locations in 2010 and 2012, respectively.
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We examined the tetraploid cotton draft genome sequence
(G. hirsutum L. acc. TM-1, which was one of the parents of the RIL
population) (Zhang et al., 2015), to determine if there were plausible
candidate genes underlying detected QTL. For QTL that mapped to
A06, A07, and D12, candidate genes found to colocalize included a
copper transporter, metal tolerance protein, and potassium trans-
porter, respectively. For the Zn QTL on A05, which was detected by
both mapping methods as well as for both irrigation regimes, a zinc
transporter gene described in G. hirsutum (UniProt ID K9N1X9) was
identified within the 342 kb interval defined by the flanking markers.
The Bayesian classification-detected QTL for potassium on A09,
qK.A09.33.00, defined a 1.9 Mb interval containing a gene involved in
metal ion transport (UniProt ID B9IFR1).

Prediction of irrigation regime
We conducted a principal component analysis (PCA) on best linear
unbiased estimators (BLUEs) for all 14 elements, revealing that the first
twoPCs accounted for almost half (47.3%) of the total elemental variance.
ThePCArevealedadistinct separationbetweenthe two irrigationregimes,
with PC 2 on the y-axis largely separating the WL and WW into two

groups and explaining 14.1% of the total variance (Figure 5A). These
results suggested that the seed ionome could be predictive of abiotic
stress. To test this hypothesis, five supervised machine learning ap-
proaches, logistic regression, linear discriminate analysis (LDA), qua-
dratic discriminate analysis (QDA), k-nearest neighbors (KNN), and
support vector machines (SVM), were used to determine the irrigation
regime within which a RIL was grown. To help control for non-
reproducible environmental effects, the elemental BLUEs for the indi-
vidual years were first centered and scaled within respective years prior
to their use in the five models. Extremely high prediction accuracies
were obtained for all five methods, but SVM achieved the highest aver-
age prediction accuracy across the three years at 97.7% (Figure 5B) and a
maximum accuracy of 98.5% for 2011. The KNNmethod produced the
lowest average prediction accuracy of 92.5%, which was observed in
2010 and 2011. The remaining three methods, LDA, logistic regression,
and QDA, had an across-year-and-irrigation regime average of �94%.

DISCUSSION
Over the lastdecade, ionomicshasbeenestablishedas apowerful tool for
both examining the nutrient status of plants to assess homeostasis and

Figure 2 Sources of variation for cotton seed elements. The figure shows the decomposition of phenotypic variance into respective components:
teal for genotypic (G), yellow for irrigation regime (I), purple for year (Y), red for genotype-by-irrigation regime interaction (G·I), blue for genotype-
by-year interaction (G·Y), orange for irrigation regime-by-year interaction (I·Y), green for the three way interaction of genotype-by-irrigation
regime-by-year (G·I·Y), pink for field design variables replication, block, and column, and gray for residual variance. Variance component
estimates were calculated from modeling all terms in Equation 2 as random. The table below lists the broad-sense heritabilities (Ĥ

2
) for the

two irrigation regimes, water-limited (WL) and well-watered (WW), and the significance of the P-values for the different fixed effects from Equation 2.
���� P-value , 0.0001, ��� P-value , 0.001, �� P-value , 0.01, � P-value , 0.05, and NS . 0.05.
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for revealing the genetic mechanisms responsible for elemental varia-
tion. However, research efforts have largely been focused on character-
izing the elemental concentrationof variousplant tissues and identifying
mutant lines for further genetic characterization (Lahner et al., 2003;
Baxter et al., 2009; Pinson et al., 2015). These studies have led to valu-
able knowledge on the genetic control of element accumulation in
plants, but have offered limited insight into how the ionome interacts
with the environment. To address these information gaps in ionomics
research, we evaluated a cotton RIL mapping population under con-
trasting irrigation regimes to assess the effects of water deficit on the
ionome in a hot, arid environment. The elemental profiles of the local-
ized soil environment were also analyzed so that these results could be
incorporated into the analysis of the cotton seed ionome. Further
expanding on this work, the elemental concentration data were utilized
for prediction of abiotic stress, as defined by WL or WW irrigation
regimes, to investigate how accurately the ionome predicts the physi-
ological status of the plant.

The heterogeneous nature of the soil environment can impact
phenotypic variation of most quantitative traits and influence growth
characteristics like root density, biomass allocation, and interplant
competition (Caldwell et al., 1996; Hutchings et al., 2003). Because of
this innate relationship between the soil environment and plant devel-
opment, we used geospatial interpolation methods to model the ele-
mental concentrations across the field site (Figure 1) in order to assess if
there was a direct association between soil and seed element levels.
Although we only found three elements (Co, Mg, and Rb) that
exhibited a significant linear relationship between soil and seed con-

centrations (Table S4 in File S5), under other more varied environ-
ments the associations may be stronger andmore numerous among the
elements. Without the inclusion of the soil data it would have been
more difficult to determine if variation observed in the seed ionomewas
due to genetic effects, abiotic stress, or only the localized environment.
This was demonstrated in the case of Mg, which had both a signif-
icant irrigation effect and a linear relationship between soil and seed
Mg concentrations. The inclusion of the interpolated soil level data
permitted us to decouple the impacts of water deficit stress from soil
variability and improve our genetic mapping, along with calculation
of phenotypic and genotypic correlations.

The irrigation regimes imposed in this experiment provided the
ability to evaluate how the cotton seed ionome responds to abiotic stress,
specificallywaterdeficit. Sevenof the14elementsassayedhad significant
differences between the irrigation regimes (Figure 2), including Ca, Mg,
and S which are important macronutrients (Mengel and Kirkby 2012).
Although we can only speculate what mechanisms may be responsible
for observed differences in most element concentrations due to water
deficit, the increased seed Ca concentration under WL conditions is
consistent with its involvement in intra-plant signaling and osmoreg-
ulation via increased solute concentration. This hypothesis is in agree-
mentwith the results of Patakas et al. (2002)who found similar elevated
Ca levels in leaves of grape (Vitis vinifera L, cv. Savatiano), another
woody perennial species like cotton, when evaluated under drought-
stress conditions. Although their analyses were based on leaf tissue
samples and not seed, one could hypothesize that seeds would show
a similar response based on Ca signaling, which occurs both as an early

n Table 1 Summary statistics of cotton seed elements

Ion Irrigation regime
Parents RIL population

TM-1 NM24016 Midparent Mean Std. Dev. Min. Max.

As WL 10.60 10.54 10.57 10.58 0.09 10.43 10.88
WW 10.57 10.54 10.56 10.53 0.07 10.39 10.74

Ca WL 12528.86 17067.21 14798.04 13125.79 2357.68 8316.97 18824.00
WW 11163.35 14774.05 12968.70 12206.20 2125.10 6348.93 16899.59

Co WL 12.29 13.09 12.69 12.09 0.38 11.40 13.03
WW 12.29 12.92 12.60 12.12 0.42 11.12 13.08

Cu WL 33.42 94.22 63.82 61.58 10.65 33.27 93.37
WW 30.74 86.60 58.67 55.56 10.41 26.29 80.54

Fe WL 237.12 459.06 348.09 305.44 50.25 210.46 427.10
WW 212.06 412.20 312.13 279.95 46.66 175.77 388.16

K WL 46164.35 48992.02 47578.18 46143.43 3280.07 38486.65 54048.57
WW 47709.49 49919.47 48814.48 46905.04 3529.59 40055.63 55012.74

Mg WL 14729.61 18466.01 16597.81 16797.41 1934.97 11709.99 20884.97
WW 16230.02 20191.12 18210.57 18003.52 1863.47 13340.41 21434.30

Mn WL 112.29 162.72 137.50 121.36 14.22 87.42 152.30
WW 105.08 148.24 126.66 118.26 14.49 81.94 161.27

Mo WL 19.02 21.00 20.01 19.74 1.24 17.32 22.76
WW 16.86 19.44 18.15 17.52 1.00 15.23 19.85

Ni WL 13.21 14.28 13.75 14.11 0.72 12.50 15.52
WW 12.88 14.00 13.44 13.88 0.77 12.25 15.92

P WL 45776.14 52804.11 49290.12 51054.12 4184.02 41247.43 61589.54
WW 45192.32 55452.35 50322.34 52830.91 3838.64 40742.95 63115.53

Rb WL 28.77 29.79 29.28 30.02 2.17 24.87 34.98
WW 26.75 27.05 26.90 27.67 1.95 22.97 33.41

S WL 14526.02 15488.89 15007.46 14663.85 1306.94 11394.59 18026.07
WW 14087.15 15004.32 14545.73 13937.97 1276.18 10665.15 16948.30

Zn WL 208.40 357.09 282.74 275.27 44.09 160.72 357.82
WW 171.51 303.45 237.48 248.19 42.92 139.85 328.92

Means, standard deviations, and ranges (parts per billion) of best linear unbiased estimators (BLUEs) for seed elements for the TM-1·NM24016 recombinant inbred
line (RIL) population evaluated under two irrigation regimes, water-limited (WL) and well-watered (WW) conditions, including parental lines and their midparent values.
Field trials were conducted from 2010-12 at the Maricopa Agricultural Center located in Maricopa, AZ.
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and secondary signaling response, with local and global effects medi-
ated through transport in the xylem (Knight 1999; Sanders et al., 1999;
Xiong et al., 2002;White and Broadley 2003). Additionally, the elevated
levels of Ca in seeds harvested from WL plots could also be due to
increased levels of Ca associated with stomatal closure in response to
drought stress (Atkinson 1991; Schroeder et al., 2001; Taiz and Zeiger
2006). However the long-term dynamics of Ca flux in these responses
and what influence they would have on the seed ionome remains unclear
given that time-course studies are currently lacking in the literature.

To gain insight into the ionome and potential joint regulation of
elemental accumulation in cotton seed, we evaluated the correlations,
both phenotypic and genotypic, among the elements profiled (Figure 3).
The phenotypic correlations confirmed our initial hypothesis that ele-
ments with similar biological relevance and chemical properties would
be highly correlated, consistent with the results of Shakoor et al. (2016)
and others. However, the lack of a contrast in the correlation values and
patterns between the two irrigation regimes was somewhat surprising
(Figure 3). Initially, we hypothesized that differences in available soil
moisturewould impact the relationship among the individual elements.
To evaluate if this association was due to environment or genetics, we
assessed the genetic correlation among the elements using a multivar-
iate restricted maximum likelihood approach, an analysis not previ-
ously used in ionomic studies. The results of these analyses mirrored

those obtained for the phenotypic correlations, namely that the
strength and relationship among genotypic correlations were highly
similar across the two irrigation regimes. In both sets of correlations,
the majority of macronutrients clustered in the center of the correlation
network graphs, along with those micronutrient elements involved in
redox reactions (Cu, Fe, Ni, and Zn) (Taiz and Zeiger 2006; Mengel and
Kirkby 2012). The remaining elements were grouped along the perim-
eter including arsenic, which was the only element to be negatively
correlated with all other elements, most likely due to its toxicity to
plants and thus exclusion (Meharg and Hartley-Whitaker 2002). Al-
though our study represents an ideal situation given the precisely con-
trolled water deficit stress and single field site, the consistent trends in
correlation, both phenotypic and genotypic, support the supposition
that the cotton ionome is a highly interrelated system under strong
genetic control.

Given the observed genotypic correlation values suggesting a shared
genetic basis responsible for elemental accumulation,QTLmappingwas
carried out to assess if loci responsible for phenotypic variation were
indeed shared among the elements. A Bayesian classification method
(Zhang et al., 2005) that fitted all markers simultaneously while exploit-
ing a priori information was used to more fully control for the genetic
background effects to enable better detection of causal loci. This ap-
proach was successful in detecting QTL, but more importantly it

Figure 3 Network correlation graph of phenotypic (̂rpij ) and genotypic (̂rgij ) correlations among elements profiled in cotton seed. Purple and blue
edge colors represent positive correlation values, red and gold represent negative correlation values. The edge thickness represents the
magnitude of the correlation value with only those values greater than 0.20 being displayed (P , 0.05).
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identified six genomic regions to which multiple QTL mapped. The
QTL for elements that colocalized to the same location, such as Ca/Mg
on A06, Fe/Zn on A05, and Ni/Fe on D12, had similar biochemical
properties, such as being divalent cations, and were also involved in
parallel biochemical processes like regulation of osmotic potentials and
electron transfer (Taiz and Zeiger 2006).

To date, most ionomic genetic mapping studies, whether linkage
analysis or genome-wide association studies, have relied on univariate
mapping approaches (Baxter et al., 2013; Baxter et al., 2014; Zhang
et al., 2014; Asaro et al., 2016; Shakoor et al., 2016). Despite the ability
of these methods to detect QTL that individually contribute to pheno-
typic variation, they fail to account for the relationship among the
various elements, and thus the shared biology underpinning these traits
(Baxter 2015). Given the QTL results from the Bayesian analysis in
which QTL impacting physiologically related elements colocalized to
genomic regions, and the shared genetic basis revealed by genotypic
correlations, a novel analysis was needed to more fully capitalize on the
inter-trait relatedness.

With these considerations in mind, a multi-trait (multivariate)
mapping approach was taken to exploit the relationships among the
elements to improve the ability to detect QTL controlling the accumu-
lation of multiple elements within the cotton seed. Seeming unrelated
regression (SUR, Zellner 1962) was implemented so that elements with
similar characteristics could be grouped together and treated as one
phenotype. The colocalizing QTL from the Bayesian analysis corrobo-
rated the division of elements into “ionic” and “redox” groups posited
in the literature (Mengel and Kirkby 2012) and further supported the
use of a multi-trait analysis. By analyzing like elements in aggregate and
accounting for the correlation among them, statistical power to detect
QTL was increased. This improved power led to more consistent de-
tection of QTLwith respect to irrigation regime; 14QTLwere identified
in both WL and WW conditions compared to four QTL found in the
Bayesian analysis. These results are more congruent with what the
genetic correlations revealed, largely that relationships among elements
are stable despite the perturbations by abiotic stress. Additionally, the
multi-trait analysis detected 10 QTL whose Bayes factors were below

Figure 4 Identified QTL controlling phenotypic variation for elemental concentration in cotton seed. Results from the multi-trait analysis, in which
elements were grouped into ionic and redox categories, are highlighted in gray. The results for the individual elements analyzed using the
Bayesian classification are listed below the corresponding multi-trait groupings. Loci that were shared across ionic and redox groups are
highlighted with symbols above the respective chromosome and marker names. “Ungrouped” denotes individual elements that were not
contained in the multi-trait groupings and analyzed using only the Bayesian classification method. No QTL were detected for Co, Mn, and S,
thus these elements are not shown.
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the significance threshold in the Bayesian analysis, and thus missed,
further highlighting why previous genetic mapping studies not utilizing
a multi-trait analysis likely missed identifying important loci. Although
the two mapping approaches rely on two distinctly different branches
of statistics, Bayesian and frequentist methods, there was agreement
between the two; a total of 18 QTL were concordant between methods
providing further support for the mutually identified QTL (Figure 4).
Also, elements with co-located QTL had similar ionic charges, suggest-
ing that the genetic factors underlying these QTL are not element-
specific but instead dependent on chemical properties like those used
by cellular ion transporters for ion selectivity (Tester 1990).

Although the detected QTL explained a moderate amount of the
phenotypic variationobserved for cotton seedelemental concentrations,
therewas a question ofwhether these data themselves could describe the
physiological status of the plant. The results from PCA clearly demon-
strated that the elemental data could capture the effects of water deficit
and served to separate the RILs into respective irrigation regimes in
which they were evaluated (Figure 5A). Building on these results, var-
ious supervised machine learning algorithms were used to predict
which irrigation regime RILs were evaluated under out of the three
years in which this experiment was conducted. When the year-to-year
variation was removed via standardization, extremely high prediction
accuracies, greater than 92%, were achieved for all of the methods used
with minimal variation in prediction among years within a method.
These results demonstrate that the ionome is capable of encapsulating
the physiological status of cotton plants without the use of more tra-
ditional physiological phenotypes like carbon isotope discrimination,
relative leaf water content, osmotic adjustment, and other, more time-
consuming and costly measurements.

Conclusion
The ionome is capable of capturing the mineral and nutrient content of
the plant tissue from which samples are taken thereby offering valuable
insight on the physiological status of the plant (Salt et al., 2008). Because
of this, ionomic profiling was used for both cotton seeds and the am-
bient soil to study how the ionome interacts with and responds to its
localized environment, with a focus on the impact of water deficit. Our

results provide further evidence that the ionome is a complex, interre-
lated biosystem that is largely under shared genetic control, and as such,
it responds as an integrated unit to abiotic stress as evident by the stable
relationship among phenotypic and genotypic correlations despite the
contrasting irrigation treatments. Because of the interrelatedness
among the ionomic traits, a genetic mapping approach that capitalizes
on this shared genetic architecture was used to detect loci that influence
the composition of the various elements in plant seed. To further
extend these findings and concepts, the ionome was found to have a
remarkably high predictive accuracy for irrigation regime status that
accurately reflected the physiological status of the plant. Although this
was a two-category classification problem of drought-stressed vs. non-
drought stressed, it reflects the ability of these types of data to describe
the status and overall wellbeing of the plant. Taken together, the present
work provides new insight into how complex biological systems are con-
trolled at the genetic level through multiple shared loci that are associated
with correlated responses, including responses to water deficit regimes.
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