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RESEARCH ARTICLE
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Variation of organic matter quantity and quality in streams at
Critical Zone Observatory watersheds
Matthew P. Miller1,2, Elizabeth W. Boyer1, Diane M. McKnight3, Michael G. Brown1, Rachel S. Gabor3,
Carolyn T. Hunsaker4, Lidiia Iavorivska1, Shreeram Inamdar5, Dale W. Johnson6, Louis A. Kaplan7,
Henry Lin1, William H. McDowell8, and Julia N. Perdrial9

1Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA,
2U.S. Geological Survey, Utah Water Science Center, Salt Lake City, Utah, USA, 3Department of Civil, Environmental, and
Architectural Engineering, University of Colorado, Boulder, Colorado, USA, 4U.S. Department of Agriculture Forest Service,
Pacific Southwest Research Station, Fresno, California, USA, 5Department of Plant and Soil Sciences, University of
Delaware, Newark, Delaware, USA, 6Department of Natural Resources and Environmental Science, University of Nevada,
Reno, Nevada, USA, 7Stroud Water Research Center, Avondale, Pennsylvania, USA, 8Department of Natural Resources and
the Environment, University of New Hampshire, Durham, New Hampshire, USA, 9Department of Geology, University of
Vermont, Burlington, Vermont, USA

Abstract The quantity and chemical composition of dissolved organic matter (DOM) in surface waters
influence ecosystem processes and anthropogenic use of freshwater. However, despite the importance of
understanding spatial and temporal patterns in DOM, measures of DOM quality are not routinely included
as part of large-scale ecosystem monitoring programs and variations in analytical procedures can introduce
artifacts. In this study, we used consistent sampling and analytical methods to meet the objective of defin-
ing variability in DOM quantity and quality and other measures of water quality in streamflow issuing from
small forested watersheds located within five Critical Zone Observatory sites representing contrasting envi-
ronmental conditions. Results show distinct separations among sites as a function of water quality constitu-
ents. Relationships among rates of atmospheric deposition, water quality conditions, and stream DOM
quantity and quality are consistent with the notion that areas with relatively high rates of atmospheric nitro-
gen and sulfur deposition and high concentrations of divalent cations result in selective transport of DOM
derived from microbial sources, including in-stream microbial phototrophs. We suggest that the critical
zone as a whole strongly influences the origin, composition, and fate of DOM in streams. This study high-
lights the value of consistent DOM characterization methods included as part of long-term monitoring pro-
grams for improving our understanding of interactions among ecosystem processes as controls on DOM
biogeochemistry.

1. Introduction

Water quality and aquatic ecosystems are strongly influenced by the quantity and chemical composition of
dissolved organic matter (DOM). As a fundamental water quality characteristic of surface waters, DOM pro-
vides sources of carbon and energy for heterotrophic microorganisms [Fisher and Likens, 1973; Volk et al.,
1997], fuels the food web in aquatic ecosystems [Meyer and Edwards, 1990; Roberts et al., 2007], affects light
attenuation and photochemical processes in surface waters [Schindler et al., 1997; Scott et al., 2003; Cory
et al., 2007], binds and transports aquatic trace elements [McKnight et al., 1992; Aiken et al., 2011; Yamashita
and Jaffe, 2008; McIntyre and Gueguen, 2013], increases the solubility of organic pollutants [Chiou et al.,
1986], and forms precursors for disinfection by-products that affect water treatment [Bergamaschi et al.,
1999; Chow et al., 2003; Beggs et al., 2009; Kraus et al., 2011]. Further, inland waters play important roles as
processors of organic matter derived from the landscape, as sinks and sources of atmospheric C, and in the
delivery of organic matter to the oceans [Cole et al., 2007; Battin et al., 2008, 2009; Shih et al., 2010; Cory
et al., 2014]. For example, it has been estimated that up to 1.4 of the 2.9 PgC/yr of terrestrially derived car-
bon that enters inland waters is processed and released to the atmosphere [Tranvik et al., 2009].

Research at Critical Zone Observatory (CZO) watersheds aims to understand coupled physical, chemical,
and biological processes that shape the environment [White et al., 2015; Brantley et al., 2016], and site-
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specific studies of DOM biogeochemistry are ongoing. Observed spatial and temporal variability in dissolved
organic carbon (DOC) in the Shale Hills CZO watershed was reported to be indicative of flushing and biologi-
cal controls on DOC export [Andrews et al., 2011]. The source and redox state of water-soluble soil organic
matter was shown to vary with soil horizon in the Boulder Creek CZO watershed, with more oxidized and
microbially derived organic matter at greater depths [Gabor et al., 2014]. In the same watershed, stream water
DOM was observed to shift during the course of spring snowmelt from having higher contributions of amino
acid-like fluorescence from groundwater to humic-like contributions from soil water [Burns et al., 2016].

Notwithstanding the important insights gained from site-specific work, questions remain regarding under-
standing regional variation in DOM among watersheds. Measures of DOM quality are not routinely included
as part of large-scale watershed monitoring programs and only a few comparisons have been made of the
spectral properties of DOM over a wide range of aquatic ecosystems. One encouraging finding when con-
sidering cross-site comparisons of DOM is that Jaffe et al. [2008] showed that the results of spectroscopic
analyses to quantify DOM quality were generally consistent across two laboratories analyzing the same
broad set of samples, although a slight bias was found for more dilute samples. In addition, application of
instrument specific correction factors has been shown to result in comparable fluorescence spectra allowing
comparison of DOM properties collected on different analytical instruments, although the effectiveness of
the correction varied by instrument [Jaffe et al., 2008; Cory et al., 2010].

The emphasis on quantifying and understanding patterns in DOM quality at the Boulder Creek site has set
the stage for a broader, regional comparison of DOM quantity and quality among sites. Here our objective
was to define the spatial variability in DOM quantity and quality among five forested CZO sites. We collect-
ed stream samples at regular intervals over 1 year from each of the sites, which are situated in a diversity of
geologic and climatic settings across North America. To best facilitate characterization of DOM quality
through spectral measurements; we used consistent sampling, storage, and laboratory analysis methods
among the sites.

We use the cross-site DOM data collected in this study, along with information from published literature, to
develop a conceptual model about ecosystem processes influencing surface water DOM at regional scales.
For example, spatial variability in acidic atmospheric deposition that contributes to soil acidification and in-
stream water quality data are interpreted in the context of a conceptual model presented below. Given the
spatial extent of this study, specific ecosystem processes influencing DOM quantity and quality are not
quantified. Rather, relationships between rates of atmospheric deposition and water quality conditions are
interpreted in the context of processes identified in previous studies to provide a first look at the role of
atmospheric sulfur (S) and nitrogen (N) deposition and calcium (Ca) and magnesium (Mg) concentrations as
contributing to spatial variability in DOM composition among watersheds representing a diversity of envi-
ronmental conditions. This approach provides a foundation from which detailed, site-specific studies can
quantify temporally and spatially variable watershed processes.

There are many factors that might affect the regional variation of DOM. The pH and ionic strength of sur-
face waters and catchment soils influence DOM solubility as well as the molecular weight distribution
among the myriad organic molecules comprising DOM. Atmospheric deposition of S and N results in soil
acidification and increased soil solution ionic strength. Following the implementation of the 1990 Title IV
Amendment of the Clean Air Act, decreases in S deposition, most notably in the northeastern U.S., have
been observed over time [Lynch et al., 2000; Driscoll et al., 2001]. Multiple studies have suggested altera-
tions to soil pH and changes in soil solution ionic strength influence the transport of DOM to surface
waters [Galloway, 1995; Monteith et al., 2007; Evans et al., 2008, 2012; Hru�ska et al., 2009; Ekstrom et al.,
2011]. For example, through spectroscopic analysis of archived samples collected from lakes in the
northeastern US as part of a long-term monitoring program, it has been shown that decreased atmo-
spheric deposition of S resulted in increased release of terrestrially derived (as indicated by lower fluores-
cence index values) DOM from the catchment [SanClements et al., 2012]. Similarly, Ekstrom et al., [2011]
showed that low S additions contributed to flushing of soil water DOM with higher molecular weight,
greater aromaticity, and greater hydrophobicity, as compared to soil water DOM in high S addition treat-
ments. In a pH-manipulation experiment of surface waters, DOM had a larger hydrodynamic diameter
and absorbed more light at high pH as compared to under low pH conditions [Pace et al., 2012]. The con-
centration of divalent cations such as Ca and Mg also influence DOM solubility and molecular weight. For
example, Ca and Mg have been shown to neutralize charges on humic substances in soils, resulting in
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decreased solubility of the humic fraction of the DOM [Hayes and Swift, 1978]. Aiken and Malcolm [1987]
observed a suppression of the solubility of high molecular weight DOM by Ca and Mg in river ecosystems
representing diverse sources of DOM.

A conceptual diagram of the potential relationships between atmospheric deposition, soil pH, divalent cat-
ion concentrations, and DOM quality and transport is presented in Figure 1. This diagram hypothesizes that
increased atmospheric deposition of S and N contributes to soil acidification, which coupled with the pres-
ence of divalent cations, results in decreased solubility and transport of high molecular weight, more chro-
mophoric fractions of terrestrially derived DOM to streams. The response of DOM quantity and quality to
changes in soil pH driven by atmospheric deposition of S and N may occur over a longer time scale relative
to the response to the presence of Ca and Mg, which may be more instantaneous. The aggregate effects of
these processes result in selective downstream transport of DOM derived from microbial biomass in soils or
from microbial phototrophs in streams. While these processes are important drivers of DOM quality and
transport, it is important to note that many other processes, not represented in this diagram also influence
the concentration and composition or chemical quality of DOM in aquatic ecosystems. These include climat-
ic conditions, hydrological flow paths, rates of primary productivity, photochemical processes, soil type, and
geology [Cory et al., 2007; Miller et al., 2009; Fellman et al., 2010; Inamdar et al., 2011, 2012; Helton et al.,
2015; Parr et al., 2015].
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Figure 1. Conceptual diagram showing relationships between inorganic constituents and DOM quality and transport in watersheds. Previous studies have identified atmospheric deposi-
tion of S and N and the presence of divalent cations (Ca21 and Mg21) as contributing to decreased solubility and transport of high molecular weight terrestrially derived (low FI) DOM. In
turn, there is selective downstream transport of microbially derived DOM (high FI). While not an exhaustive list of processes that influence DOM quality and transport, these processes
provide examples of drivers of critical zone function, including atmospheric, terrestrial, and aquatic ecosystem forcings that interact to influence stream water DOM.
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2. Materials and Methods

2.1. Sample Sites and Sample Collection
Five upland streams that drain small forested watersheds (Table 1 and Figure S1) situated within Crit-
ical Zone Observatories [White et al., 2015] are the focus of this study, as further described in Sup-
porting Information. Surface water samples were collected from each stream during nonstormflow
conditions at approximately monthly intervals for a 1 year period beginning in spring/summer 2009.
Only four of the monthly samples from the Boulder Creek site were analyzed for spectroscopic prop-
erties due to high iron (Fe) concentrations (>0.5 mg/L) in many of the samples which did not render
them appropriate for spectral measurements (details provided below). These five CZO watersheds
represent a diversity of biomes, ranging from a low elevation tropical site to high elevation, subal-
pine sites, and fall along a gradient of atmospheric deposition of S and N. Annual atmospheric wet
and dry deposition of S and inorganic N data during 2009 were obtained from the nearest National
Atmospheric Deposition Program National trends Network sampling locations (NADP-NTN; http://
nadp.sws.uiuc.edu/ntn/) for wet deposition, and the Environmental Protection Agency Clean Air Sta-
tus and Trends Network (CASTNET; http://www2.epa.gov/castnet) for dry deposition. Dry deposition
data were not available for the Luquillo site. Total (wet 1 dry) S deposition rates were low (�35 Mol/
ha/yr) at the Southern Sierra and Boulder Creek sites, compared with higher rates of S deposition at
the other three sites (�220–270 Mol/ha/yr; Table 1). Total N deposition rates were also low at the
Southern Sierra (286 Mol/ha/yr) and Boulder Creek (180 Mol/ha/yr) sites, as well as at the Luquillo
site (150 Mol/ha/yr – wet deposition only), relative to the Shale Hills (403 Mol/ha/yr) and Christina
River (496 Mol/ha/yr) sites. Details on the locations of atmospheric deposition monitoring stations are
provided in Table S1 of Supporting Information.

All water samples were collected in precombusted 250 ml amber glass bottles, kept cold, and shipped
immediately to the Pennsylvania State University for laboratory analyses. Upon arrival, approximately
100 ml were filtered through 0.7 mm, 47 mm precombusted Whatman GF/F glass fiber filters, and the filtrate
was stored at 48C until analyses. Filtration in the laboratory—as opposed to in the field—allowed for consis-
tency in the staff, filtering approach, and filter types used among sites. All samples were analyzed for DOC
as a measure of DOM concentration, and spectral absorbance and fluorescence as measures of organic mat-
ter composition. Samples were also analyzed for other parameters, including total dissolved Ca, Mg, Fe, S,
and N.

Table 1. Watershed Characteristics for the Five CZO Study Sites (ND 5 No Data)

CZO
Location

Drainage
Area
(km2)

Elevation
Range

(m)

Annual
Mean

Discharge
(m3/s)

Mean
Annual

Precipitation
(mm/yr)

Mean
Annual

Temperature
(8C)

Dominant
Vegetation Bedrock

Atmospheric
Inorganic
Nitrogen
Wet/Dry

Deposition
(Mol/ha/yr)

Atmospheric
Sulfur

Wet/Dry
Deposition
(Mol/ha/yr) References

Southern
Sierra, CA

1.0 1790–2115 0.007 1450 8.6 Oak, pine,
mixed
conifers

Granite,
Granodiorite

234/38 31/5 Johnson et al. [2011],
Hunsaker et al. [2012a],
Hunsaker and Neary [2012b],
Riebe and Granger [2013],
Hahm et al. [2014],
http://criticalzone.org/
sierra/data/

Boulder
Creek, CO

2.6 2446–2737 0.02 519 5.1 Pine, mixed
conifer

Granodiorite,
biotite gneiss

141/39 28/6 Anderson et al. [2011],
Gabor et al. [2014],
http://criticalzone.org/
boulder/data/

Shale Hills, PA 0.08 256–310 0.001 1050 9.5 Deciduous
and
evergreen

Shale 299/104 140/128 Jin et al. [2011],
West et al. [2013],
http://criticalzone.org/
shale-hills/data/

Christina
River, DE

0.12 77–108 ND 1205 12 Mixed
deciduous

Pelitic gneiss
and schist

376/120 136/83 Inamdar et al. [2011, 2012],
http://metosrv2.umd.edu/
~climate/

Luquillo, PR 2.6 375–1050 0.29 4380 24 Tropical Basalt,
volcaniclastics

150/ND 247/ND McDowell and Asbury [1994],
http://luq.lternet.edu/

Water Resources Research 10.1002/2016WR018970

MILLER ET AL. CRITICAL ZONE DOM QUALITY 8205

http://nadp.sws.uiuc.edu/ntn
http://nadp.sws.uiuc.edu/ntn
http://www2.epa.gov/castnet
http://criticalzone.org/sierra/data
http://criticalzone.org/sierra/data
http://criticalzone.org/boulder/data
http://criticalzone.org/boulder/data
http://criticalzone.org/shale-hills/data
http://criticalzone.org/shale-hills/data
http://metosrv2.umd.edu/~climate
http://metosrv2.umd.edu/~climate
http://luq.lternet.edu


2.2. Laboratory Methods
All water quality samples collected from the CZO sites were analyzed at the Pennsylvania State University.
Concentrations of DOC and total dissolved N (TDN) were measured using a Shimadzu TOC-VCPH high-
temperature carbon/N analyzer in the Department of Ecosystem Science and Management Water Quality
Lab, using the catalytic oxidation/NDIR method (for DOC) and chemiluminescence method (for N), following
methods for DOC analyses put forth by the US Geological Survey [Bird et al., 2003]. The detection limits for
DOC were 0.015 mgC/L, and for TDN were 0.015 mgN/L. C : N was calculated as the ratio of DOC to TDN
concentration. Concentrations of total dissolved Ca, Mg, Fe, and S were analyzed via inductively coupled
plasma atomic emission spectroscopy at Pennsylvania State’s Agricultural Analytical Services Lab. Fe is a
strong absorber and was analyzed to screen for samples where high iron concentrations may interfere with
spectral analysis (described below).

Absorbance spectra were measured on a Shimadzu UV-1800 UV-Visible spectrophotometer in the Depart-
ment of Ecosystem Science and Management Water Quality Lab at the Pennsylvania State University. Absor-
bance was measured every 1 nm from 190 nm to 1100 nm using a 3 ml quartz cuvette with a 1 cm path
length. Specific ultraviolet absorbance (SUVA254) was calculated as the ratio of the decadic absorption coef-
ficient at 254 nm to the DOC concentration [Weishaar et al., 2003]. Aromaticity of DOC increases as SUVA254

values increase. Innerfilter corrections are inadequate for removing innerfilter effects that occur during the
collection of fluorescence spectra of highly absorbing samples [Ohno, 2002; Miller et al., 2010]. Therefore,
highly absorbing samples were diluted such that absorbance at 254 nm was less than 0.2 prior to fluores-
cence analyses. Similarly, high Fe concentrations can influence absorbance, and subsequently fluorescence
measurements [Weishaar et al., 2003; Poulin et al., 2014], and samples with Fe concentrations greater than
0.5 mg/L were not analyzed for absorbance or fluorescence.

Three-dimensional fluorescence spectra were measured using a Fluoromax-4 fluorometer in a 1 cm path
length quartz cuvette in the Department of Ecosystem Science and Management Water Quality Lab at the
Pennsylvania State University. Emission scans of quinine sulfate were collected monthly and instrument-
corrected using the instrument-specific emission correction file. The corrected scan was compared with the
National Institute of Standards and Technology (NIST) reference spectra for quinine sulfate to verify the
effectiveness of the instrument-specific emission correction file in removing instrument bias. A lamp scan,
cuvette check, and water Raman scan were collected daily to ensure stable instrument function. Blank
(deionized water) and sample scans were collected in ratio (S/R) mode, bandwidth was 5 nm for excitation
and emission, and spectra were collected over an excitation range of 240–450 nm, at a 10 nm interval, and
an emission range of 300–600 nm, at a 2 nm interval. Fluorescence spectra were corrected in Matlab follow-
ing the recommendations of Cory et al., [2010] as follows: water Raman scans, blanks, and samples were
instrument corrected using the instrument-specific excitation and emission correction files, samples were
innerfilter corrected [McKnight et al., 2001], samples and blanks were normalized to the area under the
water Raman curve, and samples were blank subtracted. Fluorescence spectra of Pony Lake fulvic acid and
Suwannee River fulvic acid, which are available from the International Humic Substances Society (IHSS;
http://www.humicsubstances.org/), and serve as microbial and terrestrial end-member fulvic acids, respec-
tively, were collected and corrected as described above on a monthly basis to ensure that the spectra were
invariant over time and similar to those reported by Cory et al. [2010].

Fluorescence index (FI) values were calculated as the ratio of the fluorescence intensity at an emission of
470 nm to the intensity at 520 nm at an excitation wavelength of 370 nm [McKnight et al., 2001; Cory et al.,
2010]. Larger FI values are indicative of DOM derived from a variety of microbial sources including hetero-
trophic activity in soils and benthic or planktonic microbial sources which are autochthonous sources to sur-
face waters (hereafter ‘‘microbially derived’’ DOM); whereas lower values are indicative of DOM derived
from vascular plant material and soils which are allochthonous sources to surface waters (hereafter ‘‘terres-
trially derived’’ DOM). Corrected excitation emission matrices (EEMs) were fit to the 13 component Cory and
McKnight [2005] parallel factor analysis (PARAFAC) model. Fitting EEMs to this existing PARAFAC model ena-
bles the resolution of a more diverse suite of fluorescence components than may be possible by building a
PARAFAC model unique to these study sites which may have limited variation. The presence of fluorescent
components in the sample EEMs not captured by the diversity of components in the Cory and McKnight
[2005] model would be expected to appear as peaks in residual EEMs [Cawley et al., 2012]. PARAFAC model
fit was assessed by investigation of residual EEMs (i.e., the difference between the measured and PARAFAC
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modeled EEMs). Samples with residual EEMs that had absolute values of fluorescence intensities less than
10% of measured intensities were determined to be fit well by the model [Mladenov et al., 2008], and were
retained for further analyses. Two of the 69 samples fit to the PARAFAC model had residuals with intensities
greater than 10% of measured intensities, and were not retained for further analyses. The percent amino
acid-like and quinone-like fluorescence was calculated as the sum of Fmax values, as percents, of compo-
nents 8 and 13 (amino acid-like fluorophores) and components 2, 4, 5, 7, 9, 11, and 12 (quinone-like
fluorophores).

2.3. Statistical Analyses
The nonparametric Wilcoxon rank-sum test [Wilcoxon, 1945] was used to compare differences in concentra-
tions of Ca, Mg, S, DOC, and TDN, as well as C : N, SUVA254, FI, %amino acid-like fluorescence, and %quinone-
like fluorescence among each of the five stream sites. To identify the relative importance of water quality vari-
ables among CZO stream sites, a principal components analysis (PCA) was run on DOC, TDN, Ca, Mg, and S
concentration data, C : N, SUVA254, and FI, values, and %amino acid-like and %quinone-like fluorescence using
the PRIMER package [Clarke and Gorley, 2006]. All data were fourth-root transformed and standardized to a
mean of zero and standard deviation of one to down-weight the influence of water quality variables with
high absolute values [Clarke and Warwick, 2001]. Linear regression analyses between total (wet 1 dry) com-
bined S and N deposition and average DOC and FI were used to represent the longer time scale response of
DOM quantity and quality to atmospheric deposition of S and N. The rationale for combining S and N deposi-
tion is that the relevance of these constituents to DOM biogeochemistry in this study is as an acid. In contrast
to the longer time scale response of DOM quantity and quality to atmospheric deposition of S and N, DOM
response to stream chemistry is expected to occur over shorter time scales. For this reason, linear regression
analyses including all samples collected at each site (as opposed to average values) were used to assess the
relationships between DOM quantity and quality and the combined molar concentrations of Ca and Mg. Simi-
lar to the rationale described above for combining S and N deposition, Ca and Mg were combined given that
they are expected to impact DOM biogeochemistry in the same way.

3. Results

3.1. Spatial Variability in Water Quality
Concentrations of Ca and Mg had nearly identical relative patterns among sites (Figures 2a and 2b). Ca and Mg
were highest at the Shale Hills site (average concentrations of 10.9 6 6.1 and 3.6 6 1.3 mg/L, respectively); fol-
lowed by the Boulder Creek and Christina River sites. The Luquillo and Southern Sierra sites had the lowest Ca
and Mg concentrations. S concentrations increased about 2 orders of magnitude along a west to east gradient
for the four sites in the continental U.S. (Southern Sierra, Boulder Creek, Shale Hills, Christina River; Figure 2c).

S concentrations were lowest at the Southern Sierra site (average of 0.05 6 0.03 mg/L), followed by Luquillo
(average of 0.5 6 0.1 mg/L), Boulder Creek (average of 1.0 6 0.3 mg/L), Shale Hills (average of 3.2 6 0.5 mg/L),
and Christina River (average 4.8 6 0.5 mg/L, Figure 2c). A weaker, but similar pattern was observed for TDN
concentrations (Figure 2d). TDN concentrations were significantly greater at the Christina River site (average
of 0.42 6 0.08 mg/L) compared with the other sites. The Boulder Creek, Shale Hills, and Luquillo sites had inter-
mediate TDN concentrations (averages of 0.23 6 0.03, 0.19 6 0.16, and 0.18 6 0.05 mg/L, respectively) and
there were no statistically significant differences among these three sites. The Southern Sierra site had signifi-
cantly lower concentrations of TDN (average of 0.08 6 0.03 mg/L) compared with the other sites.

Average DOC concentrations ranged from 1.5 6 0.6 mg/L at the Christina River site to 5.4 6 1.9 mg/L at the
Boulder Creek site (Figure 2e). DOC concentrations were significantly greater at the Boulder Creek site com-
pared with the other four sites, among which there were no statistically significant differences. The South-
ern Sierra and Boulder Creek sites had significantly greater C : N ratios (averages of 24.6 6 7.0 and
22.8 6 5.8, respectively) compared with the other sites (Figure 2f). These high ratios were driven by low TDN
concentrations at the Southern Sierra site and high DOC concentrations at the Boulder Creek site. The Shale
Hills and Luquillo sites had intermediate C : N ratios (averages of 15.1 6 6.5 and 12.1 6 6.6, respectively),
which were significantly greater than the C : N ratios at the Christina River site (average of 3.8 6 2.2).

There was little among-site variability in the aromaticity of the DOC. Average SUVA254 values ranged from
3.6 6 0.8 L/mgC*m at the Christina River site to 4.3 6 1.0 L/mgC*m at the Luquillo site (Figure 3a), and there
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were no significant differences in SUVA254 values among sites. FI values were greatest at the Shale Hills and
Christina River sites (averages of 1.43 6 0.04 and 1.45 6 0.02, respectively), indicating a source of microbially
derived DOM compared with the other sites which had lower FI values, reflective of dominant sources of
terrestrially derived DOM (Figure 3b). FI values at the Southern Sierra (average of 1.34 6 0.03), Boulder Creek
(1.34 6 0.03), and Luquillo (1.35 6 0.03) sites were significantly less than the FI values at the Shale Hills and
Christina River sites by approximately 0.1 units, which is generally indicative of a difference in DOM source
[McKnight et al., 2001]. The percent of amino acid-like fluorescence was lowest at the Boulder Creek site
(average 4 6 1%) and greatest at the Shale Hills site (average of 8 6 2%; Figure 3c). The other sites had inter-
mediate average percent contributions of amino acid-like fluorescence (6 6 4% at the Southern Sierra site,
and 6 6 2% at the Christina River and Luquillo sites). The percent of quinone-like fluorescence was greatest
at the Boulder Creek and Luquillo sites (averages of 72 6 1% and 71 6 1%, respectively), intermediate at the
Shale Hills site (average of 70 6 1%), and lowest at the Southern Sierra and Christina River sites (averages of
68 6 2% and 68 6 1%, respectively).

There were clear differences in the PCA scores among the five study sites (Figure 4). The first and second
axes of the PCA accounted for 40 and 19%, respectively, of the variance in water quality conditions. Despite
the fact that only 59% of the variance in the data is explained by these two axes, the PCA results show that
sites tend to group together in the PCA plot. All of the Southern Sierra samples had negative scores on axis
1 and negative or slightly positive scores on axis 2, and were inversely related to Ca, Mg, TDN, and S. The
Boulder Creek samples also had negative scores on axis 1, but positive scores on axis 2, where there were

Figure 2. Box plots for (a) calcium, (b) magnesium, (c) sulfur, (d) total dissolve nitrogen, (e) dissolved organic carbon, and (f) the ratio of carbon to nitrogen. All concentrations are in
mg/L. Horizontal lines represent median values, crosses represent average values, boxes represent the 25th and 75th percentiles and error bars represent the 10th and 90th percentiles.
Statistically significant differences among sites are indicated by lower case letters (p< 0.05).
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strong positive weightings of DOC, SUVA, and %quinone-like fluorescence. Shale Hills and Christina River
samples had positive scores on axis 1 and both positive and negative scores on axis 2, and were positively
related to Mg, Ca, S, TDN, FI, and %amino acid-like fluorescence, and negatively related to C : N. The Luquillo
samples had negative scores on axis 1 and both positive and negative scores on axis 2, and were positively
related to C : N, but inversely related to FI and % amino acid-like fluorescence. Those sites with negative

Figure 3. Box plots for (a) specific ultraviolet absorbance at 254 nm, (b) the fluorescence index, (c) percent of amino acid-like fluorescence, and (d) percent of quinone-like fluorescence.
Horizontal lines represent median values, crosses represent average values, boxes represent the 25th and 75th percentiles and error bars represent the 10th and 90th percentiles. Statisti-
cally significant differences among sites are indicated by lower case letters (p< 0.05).
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axis 1 scores—Southern Sierra, Boulder Creek, and Luquillo—are sites that had low rates of atmospheric N
deposition (Table 1).

3.2. Relations Between Atmospheric Deposition of S and N and DOC Quantity and Quality
To represent the response of DOM quantity and quality to soil acidification driven by atmospheric
deposition of S and N, which is expected to occur over years to decades, the relationships between total
(wet 1 dry) combined annual S and N deposition and DOC and FI were investigated (Figure 5). DOC was
generally lower at sites with higher rates of combined S and N deposition, although the relationship is sta-
tistically insignificant (p 5 0.30). The exception to this pattern is the Southern Sierra site, where there was a
low deposition rate and low average DOC concentration. Deviation from the inverse relationship between
atmospheric deposition of S and N and DOC may be driven by watershed characteristics such as low soil
organic matter content limiting the supply of DOC and/or sorption of S to DOM or trace metals. In contrast,
FI was generally greater at sites with higher rates of deposition (p 5 0.006). This indicates that a greater frac-
tion of stream water DOM was microbially derived at sites with high rates of S and N deposition.

3.3. Relations Between Divalent Cations and DOC Quantity and Quality
In contrast to the longer time scale response of DOM quantity and quality to soil acidification driven by
atmospheric deposition of S and N, DOM response to stream chemistry, in particular Ca and Mg, is expected
to occur over shorter time scales. For this reason, all samples collected at each site (as opposed to average
values) were used to assess the relationship between DOM quantity and quality and combined concentra-
tions of Ca and Mg (Figure 6). DOC was inversely related to Ca1Mg and positively related to FI at the South-
ern Sierra (p 5 0.002 for DOC and p 5 0.01 for FI), Boulder Creek (p 5 0.37 for DOC and p 5 0.03 for FI), and
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Figure 5. Plots of total (wet 1 dry) N and S deposition versus average (a) DOC and (b) fluorescence index (FI). Error bars represent one
standard deviation. Solid lines of best fit represent statistically significant relationships (p< 0.05), whereas dashed lines of best fit represent
nonstatistically significant relationships. Note that only wet deposition data are available for the Luquillo site.
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Luquillo (p 5 0.11 for DOC and p 5 0.23 for FI) sites, indicating a greater contribution of microbially derived
DOM during times of greater Ca 1 Mg concentrations. Ca 1 Mg was positively related to DOC at the Shale
Hills (p 5 0.15) and Christina River (p 5 0.07) sites, while Ca 1 Mg was positively related to FI at Shale Hills
(p 5 0.03) and negatively related to FI at the Christina River (p 5 0.05). The range in Ca 1 Mg concentrations
at the Shale Hills site was greater than the ranges observed at the other four sites, with peak concentrations
twice that seen at the other sites. This may be a reflection of the greater solubility of the underlying Shale
bedrock at the Shale Hills site (Table 1). It is also possible that buffering capacity at this site was high
enough to maintain neutral to basic pH.

4. Discussion

4.1. Among-Site Variation in Stream Water DOM Quantity and Quality
This analysis of water quality conditions and relations among water quality constituents observed at five
CZO sites provide insights into the role of overall drivers of critical zone function, including atmospheric, ter-
restrial, and aquatic ecosystem forcings. Streams occupy a relatively small area compared to the non-
aquatic compartments of a watershed (e.g., atmosphere, soil, terrestrial vegetation, and underlying geolo-
gy). However, because they are at the lowest point in watersheds, surface waters serve as excellent integra-
tors and indicators of processes taking place in other watershed compartments [Williamson et al., 2008]. For
example, in-stream S and TDN concentrations may be reflective of atmospheric deposition and/or terrestrial
and aquatic biogeochemical processes, whereas the variability in Ca and Mg concentrations among sites
are likely indicative of differences in lithology and weathering processes. Among-site variation in deposition
rates and biogeochemical and weathering processes directly influence the concentrations of these inorgan-
ic constituents; which in turn, can control the source and quality of DOM (Figure 1).

Patterns in stream water N and S concentrations may reflect regional differences in rates of atmospheric
deposition and watershed retention. For example, the discrepancy between relatively high rates of atmo-
spheric N deposition (272 Mol/ha/yr at Southern Sierra and 404 Mol/ha/yr at Shale Hills; Table 1) and low
stream water TDN concentrations (average of 0.08 mg/L at Southern Sierra and 0.19 mg/L at Shale Hills; Fig-
ure 2d) at the Southern Sierra and Shale Hills sites suggests that watershed retention of N may be a domi-
nant control on stream water quality at these sites. Of the water quality constituents investigated, average S
concentrations had the greatest range among sites—Southern Sierra (0.05 mg/L), Boulder Creek (1.02 m/L),
Shale Hills (3.19 mg/L), Christina River (4.81 mg/L), and Luquillo (0.54 mg/L) (Figure 2c). The increase in S
concentrations along a west-east gradient for the four sites in the continental US is related to regional dif-
ferences in rates of atmospheric sulfate deposition, with total sulfate deposition rates during 2009 of 36, 34,
368, and 219 Mol/ha/yr at the Southern Sierra, Boulder Creek, Shale Hills, and Christina River sites, respec-
tively (Table 1). The Luquillo site, which had low in-stream S concentrations (average of 0.54 mg/L), had a
2009 wet deposition rate of 247 Mol/ha/yr. This discrepancy between the high deposition rate and low in-

Figure 6. Plots of calcium and magnesium versus DOC concentration and fluorescence index (FI) for all samples from each site. Solid lines of best fit represent statistically significant rela-
tionships (p< 0.05), whereas dashed lines of best fit represent nonstatistically significant relationships. Note the variable ranges on the x axes.
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stream concentrations at the Luquillo site indicates that the atmospherically deposited sulfate may be
retained in the terrestrial environment. The nonconservative nature of sulfate at Luquillo is consistent with
previous investigations of the fate of atmospherically deposited sulfate in a Puerto Rican watershed
[McDowell and Asbury, 1994; Peters et al., 2006]. Potential processes contributing to these observed patterns
include sorption to DOM or to weathering-derived aluminum and iron oxides [Shanley, 1992].

Analysis of among-site variation in stream water quality identifies the two sites in the northeastern US as
being distinct from the other sites. PCA results show that the DOM at the Shale Hills and Christina River sites
has a higher proportion of microbially derived DOM, a high contribution of amino acid-like fluorescence,
and low C : N. Soil and surface waters with high amino acid-like fluorescence and low C : N have been
shown to be positively correlated with bioavailable DOC [Fellman et al., 2008, 2009; Hood et al., 2009; Pet-
rone et al., 2011]. The low C : N ratios at the northeastern sites, possibly driven by higher rates of atmospher-
ic N deposition (Table 1), suggest that the microbially derived DOM may be more bioavailable, as low C : N
ratios have been shown to support higher bacterial growth efficiencies [Hunt et al., 2000]. In turn, the bio-
availability of surface water DOM influences energy transfer through the aquatic food web.

4.2. Atmospheric Deposition and Ca and Mg as Controls on DOM Quantity and Quality
The negative correlations between atmospheric deposition of S and N and DOC concentration and positive
correlations between S and N and FI (Figure 5) provide further insight into DOM processing in terrestrial
compartments of watersheds. Specifically, these results suggest that sites with high rates of atmospheric S
and N deposition tend to have lower concentrations of DOC, with relatively more microbially derived DOC
than sites with lower rates of atmospheric deposition, which have higher DOC concentrations and more ter-
restrially derived DOC. This cross-site pattern is consistent with the within-site trends of increased delivery
of terrestrially derived DOC to surface waters in Maine in response to declining rates of atmospheric sulfate
deposition reported by SanClements et al. [2012]. While our results do not provide a picture of temporal
change in atmospheric deposition-DOM dynamics, they do suggest that the same atmospheric deposition
and watershed biogeochemical processes shown to influence temporal variability in DOM reported by San-
Clements et al. [2012] may underlie or contribute to regional differences in water quality patterns among
CZO sites.

In addition to highlighting the potential importance of regional differences in atmospheric deposition-DOM
dynamics, this study also identifies divalent cations as potentially important controls on organic matter
stream chemistry. Previous investigations have demonstrated that divalent cations act to suppress the solu-
bility of high molecular weight DOM [Aiken and Malcolm, 1987; Hayes and Swift, 1978]. The observed nega-
tive relationship between Ca 1 Mg and DOC and positive relationship between Ca 1 Mg and FI at the
Southern Sierra, Boulder Creek, and Luquillo sites (Figure 6) is consistent with the conceptual diagram pre-
sented in Figure 1. That is, the presence of Ca and Mg results in a decrease of the solubility and transport of
terrestrially derived DOM, and the selective transport of microbially derived DOM in surface waters. This
result is also consistent with previous studies that have demonstrated that terrestrially derived DOM is gen-
erally composed of higher molecular weight DOM than DOM derived from microbial phototrophs [McKnight
et al., 2001]. There was also a weak positive relationship between Ca 1 Mg and FI at Shale Hills. However, at
both this site and the Christina River site there were positive relationships between Ca 1 Mg and DOC.
These two sites have significantly greater FI values than the other three sites (Figure 3), suggesting that
much of the DOC is microbially derived, and thus less likely to be influenced by terrestrial processes, as
compared to the other sites that have a greater proportion of terrestrially derived DOM.

4.3. Future Applications and Recommendations
Processes impacting stream water DOM characteristics are varied and complex, and despite the fact that
our observed relationships between atmospheric S and N deposition, Ca and Mg concentrations, and DOM
quantity and quality are consistent with previous studies linking DOM response to atmospheric deposition
and divalent cation concentrations (Figure 1), we acknowledge that other processes play a role. For exam-
ple, time-variable streamflow has been shown to influence DOM quantity and quality [Hood et al., 2006;
Inamdar and Mitchell, 2006; Sebestyen et al., 2008; Perdrial et al., 2014; Bellmore et al., 2015]. While the effects
of hydrology on stream water quality cannot be ruled out, many of the effects of time-variable discharge on
stream water quality were accounted for by collecting samples during nonstormflow conditions. Other pro-
cesses that have been shown to contribute to variability in DOM biogeochemistry include microbial
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processing of DOM [Wickland et al., 2007], primary productivity [Stedmon and Markager; 2005; Miller et al.,
2009], and photochemical alteration of DOM [Cory et al., 2007, 2014]. Groundwater residence times can also
affect DOM quantity and quality. For example, it has been suggested that aromatic and humic DOM moieties
are removed as water passes through the subsurface environment at the Christina River site [Inamdar et al.,
2011, 2012], and humic-like aromatic DOM decreased while labile DOM increased with increased residence
time in an alluvial aquifer in Montana [Helton et al., 2015]. The relative influence of independent effects of
groundwater residence times on DOM and the selective transport of microbially derived DOM due to atmo-
spheric deposition of S and N or the presence Ca and Mg warrants further attention. While we were not able
to account for all possible processes contributing to within-site temporal variability in DOM quantity and qual-
ity, the observed relationships reported here demonstrate the utility of incorporating measures of DOM quali-
ty, obtained using consistent laboratory methods, into monitoring programs such as the CZO.

Ongoing changes in environmental conditions such as climate and land use have direct impacts on water
quality conditions, including DOM quantity and quality; which in turn have implications for providing a safe
supply of water for growing human populations. Therefore, there is an urgent need to understand ecosystem
processes that interact to control DOM in surface waters. We demonstrate that the inclusion of regular mea-
sures of DOM quantity and quality as part of monitoring programs can be used to identify ecosystem condi-
tions and potential processes as controls on DOM. Importantly, an analysis of stream water DOM across
environmental gradients, such as the one presented here, can only be conducted where errors linked to inter-
instrument comparisons do not play a large role, and long-term monitoring programs such as the Long Term
Ecological Research program [Jaffe et al., 2008] and Critical Zone Observatories facilitate such efforts.

Additional comparative studies of DOM biogeochemistry across climatic, hydrologic, or land use gradients
are needed to identify and more fully understand the importance of a broad suite of atmospheric and ter-
restrial ecosystem processes that influence stream water quality conditions. The conceptual model pre-
sented here sets the stage for future detailed site-specific investigations of specific processes. To this end,
we propose that regular collection of samples for DOM quantity and quality be included as part of existing
or future monitoring programs. Application of the instrument correction factors documented in Cory et al.
[2010] to spectral data, and comparisons of corrected scans of quine sulfate and reference humic substan-
ces to NIST and IHSS reference spectra, respectively will ensure that results from different laboratories are
comparable. Coupling regular measures of DOM quantity and quality with detailed site-specific studies of
ecosystem processes influencing DOM biogeochemistry at CZO and other long-term monitoring sites will
provide insight into the complex relationships among climatic, physical, chemical, and biological conditions
that contribute to stream water quality conditions.
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