260 research outputs found

    Fundamental String and D1-brane in I-brane Background

    Full text link
    This paper is devoted to the study of dynamics of fundamental string and D1-brane in I-brane background. We consider configurations where string and D1-brane uniformly wrap transverse spheres. We explicitly determine corresponding conserved charges and find relations between them.Comment: 16 pages, reference adde

    Theoretical study of lepton events in the atmospheric neutrino experiments at SuperK

    Full text link
    Super-Kamiokande has reported the results for the lepton events in the atmospheric neutrino experiment. These results have been presented for a 22.5kT water fiducial mass on an exposure of 1489 days, and the events are divided into sub-GeV, multi-GeV and PC events. We present a study of nuclear medium effects in the sub-GeV energy region of atmospheric neutrino events for the quasielastic scattering, incoherent and coherent pion production processes, as they give the most dominant contribution to the lepton events in this energy region. We have used the atmospheric neutrino flux given by Honda et al. These calculations have been done in the local density approximation. We take into account the effect of Pauli blocking, Fermi motion, Coulomb effect, renormalization of weak transition strengths in the nuclear medium in the case of the quasielastic reactions. The inelastic reactions leading to production of leptons along with pions is calculated in a Δ\Delta - dominance model by taking into account the renormalization of Δ\Delta properties in the nuclear medium and the final state interaction effects of the outgoing pions with the residual nucleus. We present the results for the lepton events obtained in our model with and without nuclear medium effects, and compare them with the Monte Carlo predictions used in the simulation and the experimentally observed events reported by the Super-Kamiokande collaboration.Comment: 23 pages, 13 figure

    The phase diagram of the extended anisotropic ferromagnetic-antiferromagnetic Heisenberg chain

    Full text link
    By using Density Matrix Renormalization Group (DMRG) technique we study the phase diagram of 1D extended anisotropic Heisenberg model with ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor interactions. We analyze the static correlation functions for the spin operators both in- and out-of-plane and classify the zero-temperature phases by the range of their correlations. On clusters of 64,100,200,30064,100,200,300 sites with open boundary conditions we isolate the boundary effects and make finite-size scaling of our results. Apart from the ferromagnetic phase, we identify two gapless spin-fluid phases and two ones with massive excitations. Based on our phase diagram and on estimates for the coupling constants known from literature, we classify the ground states of several edge-sharing materials.Comment: 12 pages, 13 figure

    Supersymmetric Gauge Theories, Intersecting Branes and Free Fermions

    Get PDF
    We show that various holomorphic quantities in supersymmetric gauge theories can be conveniently computed by configurations of D4-branes and D6-branes. These D-branes intersect along a Riemann surface that is described by a holomorphic curve in a complex surface. The resulting I-brane carries two-dimensional chiral fermions on its world-volume. This system can be mapped directly to the topological string on a large class of non-compact Calabi-Yau manifolds. Inclusion of the string coupling constant corresponds to turning on a constant B-field on the complex surface, which makes this space non-commutative. Including all string loop corrections the free fermion theory is elegantly formulated in terms of holonomic D-modules that replace the classical holomorphic curve in the quantum case.Comment: 67 pages, 6 figure

    Prospects for heavy supersymmetric charged Higgs boson searches at hadron colliders

    Get PDF
    We investigate the production of a heavy charged Higgs boson at hadron colliders within the context of the MSSM. A detailed study is performed for all important production modes and basic background processes for the t\bar{t}b\bar{b} signature. In our analysis we include effects of initial and final state showering, hadronization, and principal detector effects. For the signal production rate we include the leading SUSY quantum effects at high \tan\beta>~ mt/mb. Based on the obtained efficiencies for the signal and background we estimate the discovery and exclusion mass limits of the charged Higgs boson at high values of \tan\beta. At the upgraded Tevatron the discovery of a heavy charged Higgs boson (MH^+ >~ 200 GeV) is impossible for the tree-level cross-section values. However, if QCD and SUSY effects happen to reinforce mutually, there are indeed regions of the MSSM parameter space which could provide 3\sigma evidence and, at best, 5\sigma charged Higgs boson discovery at the Tevatron for masses M_H^+<~ 300 GeV and M_H^+<~ 250 GeV, respectively, even assuming squark and gluino masses in the (500-1000) GeV range. On the other hand, at the LHC one can discover a H^+ as heavy as 1 TeV at the canonical confidence level of 5\sigma; or else exclude its existence at 95% C.L. up to masses ~ 1.5 TeV. Again the presence of SUSY quantum effects can be very important here as they may shift the LHC limits by a few hundred GeV.Comment: Latex2e, 44 pages, 15 figures, 6 tables, uses JHEP3.sty, axodraw.sty. Comments added. Discussion on QCD factors clarified. Added discussion on uncertainties. Change of presentation of Tables 4 and 5 and Fig.6. Results and conclusions unchanged. Version accepted in JHE

    An Architecture of IoT Service Delegation and Resource Allocation Based on Collaboration between Fog and Cloud Computing

    Get PDF
    Despite the wide utilization of cloud computing (e.g., services, applications, and resources), some of the services, applications, and smart devices are not able to fully benefit from this attractive cloud computing paradigm due to the following issues: (1) smart devices might be lacking in their capacity (e.g., processing, memory, storage, battery, and resource allocation), (2) they might be lacking in their network resources, and (3) the high network latency to centralized server in cloud might not be efficient for delay-sensitive application, services, and resource allocations requests. Fog computing is promising paradigm that can extend cloud resources to edge of network, solving the abovementioned issue. As a result, in this work, we propose an architecture of IoT service delegation and resource allocation based on collaboration between fog and cloud computing. We provide new algorithm that is decision rules of linearized decision tree based on three conditions (services size, completion time, and VMs capacity) for managing and delegating user request in order to balance workload. Moreover, we propose algorithm to allocate resources to meet service level agreement (SLA) and quality of services (QoS) as well as optimizing big data distribution in fog and cloud computing. Our simulation result shows that our proposed approach can efficiently balance workload, improve resource allocation efficiently, optimize big data distribution, and show better performance than other existing methods

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure

    Observation of Scaling Violations in Scaled Momentum Distributions at HERA

    Get PDF
    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of xx and Q2Q^2 using the ZEUS detector. The evolution of the scaled momentum, xpx_p, with Q2,Q^2, in the range 10 to 1280 GeV2GeV^2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2Q^2.Comment: 21 pages including 4 figures, to be published in Physics Letters B. Two references adde

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil
    corecore